
Database Questions
Database Questions

175. Combine Two Tables
176. Second Highest Salary
177. Nth Highest Salary
178. Rank Scores
180. Consecutive Numbers
181. Employees Earning More Than Their Managers
182. Duplicate Emails
183. Customers Who Never Order
196. Delete Duplicate Emails
197. Rising Temperature
511. Game Play Analysis I
512. Game Play Analysis II
534. Game Play Analysis III
570. Managers with at Least 5 Direct Reports
577. Employee Bonus
584. Find Customer Referee
586. Customer Placing the Largest Number of Orders
595. Big Countries
596. Classes More Than 5 Students
597. Friend Requests I: Overall Acceptance Rate
603. Consecutive Available Seats
607. Sales Person
608. Tree Node
610. Triangle Judgement
612. Shortest Distance in a Plane
613. Shortest Distance in a Line
619. Biggest Single Number
620. Not Boring Movies
626. Exchange Seats
627. Swap Salary
1045. Customers Who Bought All Products
1050. Actors and Directors Who Cooperated At Least Three Times
1068. Product Sales Analysis I
1069. Product Sales Analysis II
1070. Product Sales Analysis III

1075. Project Employees I
1076. Project Employees II
1077. Project Employees III
1082. Sales Analysis I
1083. Sales Analysis II
1084. Sales Analysis III
1112. Highest Grade For Each Student
1113. Reported Posts
1126. Active Businesses
1141. User Activity for the Past 30 Days I
1142. User Activity for the Past 30 Days II
1148. Article Views I
1164. Product Price at a Given Date
1173. Immediate Food Delivery I
1174. Immediate Food Delivery II
1179. Reformat Department Table
1193. Monthly Transactions I
1204. Last Person to Fit in the Elevator
1211. Queries Quality and Percentage
1212. Team Scores in Football Tournament
1225. Report Contiguous Dates
1241. Number of Comments per Post
1251. Average Selling Price
1264. Page Recommendations
1270. All People Report to the Given Manager
1280. Students and Examinations
1285. Find the Start and End Number of Continuous Ranges
1294. Weather Type in Each Country
1303. Find the Team Size
1308. Running Total for Different Genders
1321. Restaurant Growth
1322. Ads Performance
1327. List the Products Ordered in a Period
1336. Number of Transactions per Visit

175. Combine Two Tables
Description

Table: Person

+-------------+---------+
| Column Name | Type |
+-------------+---------+

Solution

01/02/2020:

176. Second Highest Salary
Description

PersonId	int
FirstName	varchar
LastName	varchar
+-------------+---------+
PersonId is the primary key column for this table.
Table: Address

+-------------+---------+
| Column Name | Type |
+-------------+---------+
AddressId	int
PersonId	int
City	varchar
State	varchar
+-------------+---------+
AddressId is the primary key column for this table.

Write a SQL query for a report that provides the following information for each
person in the Person table, regardless if there is an address for each of those
people:

FirstName, LastName, City, State

Write your MySQL query statement below
select FirstName, LastName, City, State
from Person as p left join Address as a on p.PersonId = a.PersonId;

Write a SQL query to get the second highest salary from the Employee table.

+----+--------+
| Id | Salary |
+----+--------+
1	100
2	200
3	300
+----+--------+

Solution

01/13/2020:

177. Nth Highest Salary
Description

For example, given the above Employee table, the query should return 200 as the
second highest salary. If there is no second highest salary, then the query
should return null.

+---------------------+
| SecondHighestSalary |
+---------------------+
| 200 |
+---------------------+

Write your MySQL query statement below
select ifnull((
 select distinct Salary
 from Employee
 order by Salary desc
 limit 1 offset 1),
 null)
as SecondHighestSalary;

Write a SQL query to get the nth highest salary from the Employee table.

+----+--------+
| Id | Salary |
+----+--------+
1	100
2	200
3	300
+----+--------+
For example, given the above Employee table, the nth highest salary where n = 2
is 200. If there is no nth highest salary, then the query should return null.

+------------------------+
| getNthHighestSalary(2) |
+------------------------+
| 200 |
+------------------------+

Solution

01/13/2020:

178. Rank Scores
Description

CREATE FUNCTION getNthHighestSalary(N INT) RETURNS INT
BEGIN
 declare M INT;
 set M = N - 1;
 RETURN (
 # Write your MySQL query statement below.
 select distinct Salary
 from Employee
 order by Salary desc
 limit 1 offset M
);
END

Write a SQL query to rank scores. If there is a tie between two scores, both
should have the same ranking. Note that after a tie, the next ranking number
should be the next consecutive integer value. In other words, there should be no
"holes" between ranks.

+----+-------+
| Id | Score |
+----+-------+
1	3.50
2	3.65
3	4.00
4	3.85
5	4.00
6	3.65
+----+-------+
For example, given the above Scores table, your query should generate the
following report (order by highest score):

+-------+------+
| Score | Rank |
+-------+------+
4.00	1
4.00	1
3.85	2
3.65	3

Solution

01/21/2020 (MS SQL Server):

01/21/2020 (MySQL, Variables):

01/21/2020 (MySQL, count):

180. Consecutive Numbers
Description

| 3.65 | 3 |
| 3.50 | 4 |
+-------+------+

/* Write your T-SQL query statement below */
select Score, dense_rank() over(order by Score desc) as Rank
from Scores;

Write your MySQL query statement below
select
 Score, @rank := @rank + (@prev <> (@prev := Score)) as Rank
from
 Scores, (select @rank := 0, @prev := -1) as a
order by Score desc;

Write your MySQL query statement below
select Score, (select count(distinct Score) from Scores where Score >= s.Score)
as Rank
from Scores as s
order by Score desc;

Write a SQL query to find all numbers that appear at least three times
consecutively.

+----+-----+
| Id | Num |
+----+-----+
1	1
2	1
3	1
4	2
5	1

Solution

01/21/2020 (MySQL, user defined variables):

181. Employees Earning More Than Their Managers
Description

| 6 | 2 |
| 7 | 2 |
+----+-----+
For example, given the above Logs table, 1 is the only number that appears
consecutively for at least three times.

+-----------------+
| ConsecutiveNums |
+-----------------+
| 1 |
+-----------------+

Write your MySQL query statement below
select
 distinct Num as ConsecutiveNums
from
(
 select
 Num, @cnt := if(@prev = (@prev := Num), @cnt + 1, 1) as freq
 from
 Logs, (select @cnt := 0, @prev := (select Num from Logs limit 1)) as c
) as n
where freq > 2;

The Employee table holds all employees including their managers. Every employee
has an Id, and there is also a column for the manager Id.

+----+-------+--------+-----------+
| Id | Name | Salary | ManagerId |
+----+-------+--------+-----------+
1	Joe	70000	3
2	Henry	80000	4
3	Sam	60000	NULL
4	Max	90000	NULL
+----+-------+--------+-----------+

Solution

01/18/2020:

182. Duplicate Emails
Description

Solution

01/18/2020:

Given the Employee table, write a SQL query that finds out employees who earn
more than their managers. For the above table, Joe is the only employee who
earns more than his manager.

+----------+
| Employee |
+----------+
| Joe |
+----------+

Write your MySQL query statement below
select e.Name as Employee
from Employee as e inner join Employee as m on e.ManagerId = m.id
where e.Salary > m.Salary;

Write a SQL query to find all duplicate emails in a table named Person.

+----+---------+
| Id | Email |
+----+---------+
1	a@b.com
2	c@d.com
3	a@b.com
+----+---------+
For example, your query should return the following for the above table:

+---------+
| Email |
+---------+
| a@b.com |
+---------+
Note: All emails are in lowercase.

183. Customers Who Never Order
Description

Solution

01/18/2020:

Write your MySQL query statement below
select Email
from Person
group by Email
having count(Email) > 1;

Suppose that a website contains two tables, the Customers table and the Orders
table. Write a SQL query to find all customers who never order anything.

Table: Customers.

+----+-------+
| Id | Name |
+----+-------+
1	Joe
2	Henry
3	Sam
4	Max
+----+-------+
Table: Orders.

+----+------------+
| Id | CustomerId |
+----+------------+
| 1 | 3 |
| 2 | 1 |
+----+------------+
Using the above tables as example, return the following:

+-----------+
| Customers |
+-----------+
| Henry |
| Max |
+-----------+

196. Delete Duplicate Emails
Description

Solution

01/18/2020:

Write your MySQL query statement below
select Name as Customers
from Customers
where Id not in (
 select CustomerId
 from Orders
);

Write a SQL query to delete all duplicate email entries in a table named Person,
keeping only unique emails based on its smallest Id.

+----+------------------+
| Id | Email |
+----+------------------+
1	john@example.com
2	bob@example.com
3	john@example.com
+----+------------------+
Id is the primary key column for this table.
For example, after running your query, the above Person table should have the
following rows:

+----+------------------+
| Id | Email |
+----+------------------+
| 1 | john@example.com |
| 2 | bob@example.com |
+----+------------------+
Note:

Your output is the whole Person table after executing your sql. Use delete
statement.

01/18/2020:

197. Rising Temperature
Description

Solution

01/18/2020:

Write your MySQL query statement below
delete p.*
from Person as p, (
 select Email, min(Id) as minId
 from Person
 group by Email
 having count(*) > 1
) as q
where p.Email = q.Email and Id > q.minId;

Write your MySQL query statement below
delete p1
from Person as p1, Person as p2
where p1.Email = p2.Email and p1.Id > p2.Id;

Given a Weather table, write a SQL query to find all dates' Ids with higher
temperature compared to its previous (yesterday's) dates.

+---------+------------------+------------------+
| Id(INT) | RecordDate(DATE) | Temperature(INT) |
+---------+------------------+------------------+
1	2015-01-01	10
2	2015-01-02	25
3	2015-01-03	20
4	2015-01-04	30
+---------+------------------+------------------+
For example, return the following Ids for the above Weather table:

+----+
| Id |
+----+
| 2 |
| 4 |
+----+

511. Game Play Analysis I
Description

Write your MySQL query statement below
select w1.Id
from Weather as w1, Weather as w2
where datediff(w1.RecordDate, w2.RecordDate) = 1 and w1.Temperature >
w2.Temperature;

Table: Activity

+--------------+---------+
| Column Name | Type |
+--------------+---------+
player_id	int
device_id	int
event_date	date
games_played	int
+--------------+---------+
(player_id, event_date) is the primary key of this table.
This table shows the activity of players of some game.
Each row is a record of a player who logged in and played a number of games
(possibly 0) before logging out on some day using some device.

Write an SQL query that reports the first login date for each player.

The query result format is in the following example:

Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
1	2	2016-03-01	5
1	2	2016-05-02	6
2	3	2017-06-25	1
3	1	2016-03-02	0
3	4	2018-07-03	5
+-----------+-----------+------------+--------------+

Result table:
+-----------+-------------+
| player_id | first_login |
+-----------+-------------+

Solution

01/13/2020:

512. Game Play Analysis II
Description

1	2016-03-01
2	2017-06-25
3	2016-03-02
+-----------+-------------+

Write your MySQL query statement below
select player_id, min(event_date) as first_login
from Activity
group by player_id
order by player_id;

Table: Activity

+--------------+---------+
| Column Name | Type |
+--------------+---------+
player_id	int
device_id	int
event_date	date
games_played	int
+--------------+---------+
(player_id, event_date) is the primary key of this table.
This table shows the activity of players of some game.
Each row is a record of a player who logged in and played a number of games
(possibly 0) before logging out on some day using some device.

Write a SQL query that reports the device that is first logged in for each
player.

The query result format is in the following example:

Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1 | 2 | 2016-03-01 | 5 |

Solution

01/18/2020:

534. Game Play Analysis III
Description

1	2	2016-05-02	6
2	3	2017-06-25	1
3	1	2016-03-02	0
3	4	2018-07-03	5
+-----------+-----------+------------+--------------+

Result table:
+-----------+-----------+
| player_id | device_id |
+-----------+-----------+
1	2
2	3
3	1
+-----------+-----------+

Write your MySQL query statement below
select player_id, device_id
from Activity
where (player_id, event_date) in (
 select player_id, min(event_date)
 from Activity
 group by player_id
);

Table: Activity

+--------------+---------+
| Column Name | Type |
+--------------+---------+
player_id	int
device_id	int
event_date	date
games_played	int
+--------------+---------+
(player_id, event_date) is the primary key of this table.
This table shows the activity of players of some game.

Solution

01/21/2020 (MySQL):

Each row is a record of a player who logged in and played a number of games
(possibly 0) before logging out on some day using some device.

Write an SQL query that reports for each player and date, how many games played
so far by the player. That is, the total number of games played by the player
until that date. Check the example for clarity.

The query result format is in the following example:

Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
1	2	2016-03-01	5
1	2	2016-05-02	6
1	3	2017-06-25	1
3	1	2016-03-02	0
3	4	2018-07-03	5
+-----------+-----------+------------+--------------+

Result table:
+-----------+------------+---------------------+
| player_id | event_date | games_played_so_far |
+-----------+------------+---------------------+
1	2016-03-01	5
1	2016-05-02	11
1	2017-06-25	12
3	2016-03-02	0
3	2018-07-03	5
+-----------+------------+---------------------+
For the player with id 1, 5 + 6 = 11 games played by 2016-05-02, and 5 + 6 + 1 =
12 games played by 2017-06-25.
For the player with id 3, 0 + 5 = 5 games played by 2018-07-03.
Note that for each player we only care about the days when the player logged in.

Write your MySQL query statement below
select player_id, event_date, games_played_so_far
from (
 select
 player_id, event_date,
 if(@player = (@player := player_id) and @mydate < (@mydate := event_date),
@games := @games + games_played, (@games := games_played))
 as games_played_so_far,

01/21/2020 (MySQL):

570. Managers with at Least 5 Direct Reports
Description

 @mydate := event_date
 from
 (select * from Activity order by player_id, event_date) as a,
 (
 select
 @player := (select player_id from Activity order by player_id,
event_date limit 1),
 @mydate := (select event_date from Activity order by player_id,
event_date limit 1),
 @games := (select games_played from Activity order by player_id,
event_date limit 1)
) as tmp
) as t;

Write your MySQL query statement below
select player_id, event_date, games_played_so_far
from (
 select
 player_id, event_date,
 @games := if(player_id = @player, @games + games_played, games_played)
 as games_played_so_far,
 @player := player_id
 from
 (select * from Activity order by player_id, event_date) as a,
 (select @player := -1, @games := 0) as tmp
) as t;

The Employee table holds all employees including their managers. Every employee
has an Id, and there is also a column for the manager Id.

+------+----------+-----------+----------+
|Id |Name |Department |ManagerId |
+------+----------+-----------+----------+
101	John	A	null
102	Dan	A	101
103	James	A	101
104	Amy	A	101
105	Anne	A	101
106	Ron	B	101

Solution

01/21/2020 (MySQL):

577. Employee Bonus
Description

+------+----------+-----------+----------+
Given the Employee table, write a SQL query that finds out managers with at
least 5 direct report. For the above table, your SQL query should return:

+-------+
| Name |
+-------+
| John |
+-------+
Note:
No one would report to himself.

Write your MySQL query statement below
select Name
from Employee
where Id in (
 select ManagerId
 from Employee
 group by ManagerId
 having count(*) >= 5
);

Select all employee's name and bonus whose bonus is < 1000.

Table:Employee

+-------+--------+-----------+--------+
| empId | name | supervisor| salary |
+-------+--------+-----------+--------+
1	John	3	1000
2	Dan	3	2000
3	Brad	null	4000
4	Thomas	3	4000
+-------+--------+-----------+--------+
empId is the primary key column for this table.
Table: Bonus

Solution

01/14/2020:

584. Find Customer Referee
Description

+-------+-------+
| empId | bonus |
+-------+-------+
| 2 | 500 |
| 4 | 2000 |
+-------+-------+
empId is the primary key column for this table.
Example ouput:

+-------+-------+
| name | bonus |
+-------+-------+
John	null
Dan	500
Brad	null
+-------+-------+

Write your MySQL query statement below
select name, bonus
from Employee as e left join Bonus as b on e.empId = b.empId
where bonus < 1000 or bonus is null;

Given a table customer holding customers information and the referee.

+------+------+-----------+
| id | name | referee_id|
+------+------+-----------+
1	Will	NULL
2	Jane	NULL
3	Alex	2
4	Bill	NULL
5	Zack	1
6	Mark	2
+------+------+-----------+
Write a query to return the list of customers NOT referred by the person with id
'2'.

Solution

01/14/2020:

586. Customer Placing the Largest Number of Orders
Description

For the sample data above, the result is:

+------+
| name |
+------+
| Will |
| Jane |
| Bill |
| Zack |
+------+

Write your MySQL query statement below
select name
from customer
where referee_id is null or referee_id <> 2;

Query the customer_number from the orders table for the customer who has placed
the largest number of orders.

It is guaranteed that exactly one customer will have placed more orders than any
other customer.

The orders table is defined as follows:

Column	Type
order_number (PK)	int
customer_number	int
order_date	date
required_date	date
shipped_date	date
status	char(15)
comment	char(200)
Sample Input

| order_number | customer_number | order_date | required_date | shipped_date |
status | comment |

Solution

01/14/2020:

595. Big Countries
Description

|--------------|-----------------|------------|---------------|--------------|--
------|---------|
| 1 | 1 | 2017-04-09 | 2017-04-13 | 2017-04-12 |
Closed | |
| 2 | 2 | 2017-04-15 | 2017-04-20 | 2017-04-18 |
Closed | |
| 3 | 3 | 2017-04-16 | 2017-04-25 | 2017-04-20 |
Closed | |
| 4 | 3 | 2017-04-18 | 2017-04-28 | 2017-04-25 |
Closed | |
Sample Output

customer_number
3
Explanation

The customer with number '3' has two orders, which is greater than either
customer '1' or '2' because each of them only has one order.
So the result is customer_number '3'.
Follow up: What if more than one customer have the largest number of orders, can
you find all the customer_number in this case?

Write your MySQL query statement below
select customer_number
from (
 select customer_number, count(*) as cnt
 from orders
 group by customer_number
) as e
order by e.cnt desc
limit 1;

There is a table World

+-----------------+------------+------------+--------------+---------------+
| name | continent | area | population | gdp |

Solution

01/13/2020:

596. Classes More Than 5 Students
Description

+-----------------+------------+------------+--------------+---------------+
Afghanistan	Asia	652230	25500100	20343000
Albania	Europe	28748	2831741	12960000
Algeria	Africa	2381741	37100000	188681000
Andorra	Europe	468	78115	3712000
Angola	Africa	1246700	20609294	100990000
+-----------------+------------+------------+--------------+---------------+
A country is big if it has an area of bigger than 3 million square km or a
population of more than 25 million.

Write a SQL solution to output big countries' name, population and area.

For example, according to the above table, we should output:

+--------------+-------------+--------------+
| name | population | area |
+--------------+-------------+--------------+
| Afghanistan | 25500100 | 652230 |
| Algeria | 37100000 | 2381741 |
+--------------+-------------+--------------+

Write your MySQL query statement below
select name, population, area
from World
where area >= 3000000 or population >= 25000000;

There is a table courses with columns: student and class

Please list out all classes which have more than or equal to 5 students.

For example, the table:

+---------+------------+
| student | class |
+---------+------------+
| A | Math |
| B | English |

Solution

01/18/2020:

597. Friend Requests I: Overall Acceptance Rate
Description

C	Math
D	Biology
E	Math
F	Computer
G	Math
H	Math
I	Math
+---------+------------+
Should output:

+---------+
| class |
+---------+
| Math |
+---------+

Note:
The students should not be counted duplicate in each course.

Write your MySQL query statement below
select class
from courses
group by class
having count(distinct student) >= 5;

In social network like Facebook or Twitter, people send friend requests and
accept others’ requests as well. Now given two tables as below:

Table: friend_request
sender_id	send_to_id	request_date
1	2	2016_06-01
1	3	2016_06-01
1	4	2016_06-01
2	3	2016_06-02

Solution

01/18/2020:

| 3 | 4 | 2016-06-09 |

Table: request_accepted
requester_id	accepter_id	accept_date
1	2	2016_06-03
1	3	2016-06-08
2	3	2016-06-08
3	4	2016-06-09
3	4	2016-06-10

Write a query to find the overall acceptance rate of requests rounded to 2
decimals, which is the number of acceptance divide the number of requests.

For the sample data above, your query should return the following result.

accept_rate
0.80

Note:
The accepted requests are not necessarily from the table friend_request. In this
case, you just need to simply count the total accepted requests (no matter
whether they are in the original requests), and divide it by the number of
requests to get the acceptance rate.
It is possible that a sender sends multiple requests to the same receiver, and a
request could be accepted more than once. In this case, the ‘duplicated’
requests or acceptances are only counted once.
If there is no requests at all, you should return 0.00 as the accept_rate.

Explanation: There are 4 unique accepted requests, and there are 5 requests in
total. So the rate is 0.80.

Follow-up:
Can you write a query to return the accept rate but for every month?
How about the cumulative accept rate for every day?

603. Consecutive Available Seats
Description

Solution

Write your MySQL query statement below
select round(if(requests = 0, 0, accepts / requests), 2) as accept_rate
from
 (
 select count(distinct sender_id, send_to_id) as requests
 from friend_request
) as r,
 (
 select count(distinct requester_id, accepter_id) as accepts
 from request_accepted
) as a;

Several friends at a cinema ticket office would like to reserve consecutive
available seats.
Can you help to query all the consecutive available seats order by the seat_id
using the following cinema table?
seat_id	free
1	1
2	0
3	1
4	1
5	1

Your query should return the following result for the sample case above.

seat_id
3
4
5
Note:
The seat_id is an auto increment int, and free is bool ('1' means free, and '0'
means occupied.).
Consecutive available seats are more than 2(inclusive) seats consecutively
available.

01/18/2020:

01/18/2020:

607. Sales Person
Description

Write your MySQL query statement below
select distinct c1.seat_id
from cinema as c1 join cinema as c2 join cinema as c3 on c1.seat_id = c2.seat_id
+ 1 || c1.seat_id = c3.seat_id - 1
where c1.free = 1 and c2.free = 1 and c3.free = 1;

Write your MySQL query statement below
select distinct c2.seat_id
from cinema as c1, cinema as c2
where c1.free = 1 and c2.free = 1 and c1.seat_id = c2.seat_id + 1
union
select distinct c1.seat_id
from cinema as c1, cinema as c2
where c1.free = 1 and c2.free = 1 and c1.seat_id = c2.seat_id + 1
order by seat_id;

Description

Given three tables: salesperson, company, orders.
Output all the names in the table salesperson, who didn’t have sales to company
'RED'.

Example
Input

Table: salesperson

+----------+------+--------+-----------------+-----------+
| sales_id | name | salary | commission_rate | hire_date |
+----------+------+--------+-----------------+-----------+
1	John	100000	6	4/1/2006
2	Amy	120000	5	5/1/2010
3	Mark	65000	12	12/25/2008
4	Pam	25000	25	1/1/2005
5	Alex	50000	10	2/3/2007
+----------+------+--------+-----------------+-----------+

Solution

01/14/2020:

The table salesperson holds the salesperson information. Every salesperson has a
sales_id and a name.
Table: company

+---------+--------+------------+
| com_id | name | city |
+---------+--------+------------+
1	RED	Boston
2	ORANGE	New York
3	YELLOW	Boston
4	GREEN	Austin
+---------+--------+------------+
The table company holds the company information. Every company has a com_id and
a name.
Table: orders

+----------+------------+---------+----------+--------+
| order_id | order_date | com_id | sales_id | amount |
+----------+------------+---------+----------+--------+
1	1/1/2014	3	4	100000
2	2/1/2014	4	5	5000
3	3/1/2014	1	1	50000
4	4/1/2014	1	4	25000
+----------+----------+---------+----------+--------+
The table orders holds the sales record information, salesperson and customer
company are represented by sales_id and com_id.
output

+------+
| name |
+------+
| Amy |
| Mark |
| Alex |
+------+
Explanation

According to order '3' and '4' in table orders, it is easy to tell only
salesperson 'John' and 'Alex' have sales to company 'RED',
so we need to output all the other names in table salesperson.

608. Tree Node
Description

Write your MySQL query statement below
select s.name
from salesperson as s
where s.sales_id not in(
 select sales_id
 from orders as o left join company as c on o.com_id = c.com_id
 where c.name = 'RED');

Given a table tree, id is identifier of the tree node and p_id is its parent
node's id.

+----+------+
| id | p_id |
+----+------+
1	null
2	1
3	1
4	2
5	2
+----+------+
Each node in the tree can be one of three types:
Leaf: if the node is a leaf node.
Root: if the node is the root of the tree.
Inner: If the node is neither a leaf node nor a root node.

Write a query to print the node id and the type of the node. Sort your output by
the node id. The result for the above sample is:

+----+------+
| id | Type |
+----+------+
1	Root
2	Inner
3	Leaf
4	Leaf
5	Leaf
+----+------+

Solution

01/22/2020:

610. Triangle Judgement
Description

Explanation

Node '1' is root node, because its parent node is NULL and it has child node '2'
and '3'.
Node '2' is inner node, because it has parent node '1' and child node '4' and
'5'.
Node '3', '4' and '5' is Leaf node, because they have parent node and they don't
have child node.

And here is the image of the sample tree as below:

 1
 / \
 2 3
 / \
 4 5
Note

If there is only one node on the tree, you only need to output its root
attributes.

Write your MySQL query statement below
select
 id,
 case
 when p_id is null then 'Root'
 when p_id is not null and id in (select distinct p_id from tree) then 'Inner'
 else 'Leaf' end as Type
from tree;

A pupil Tim gets homework to identify whether three line segments could possibly
form a triangle.

Solution

01/14/2020:

612. Shortest Distance in a Plane
Description

However, this assignment is very heavy because there are hundreds of records to
calculate.

Could you help Tim by writing a query to judge whether these three sides can
form a triangle, assuming table triangle holds the length of the three sides x,
y and z.

x	y	z
13	15	30
10	20	15
For the sample data above, your query should return the follow result:		
x	y	z
----	----	----
13	15	30
10	20	15

Write your MySQL query statement below
select x, y, z,
 case
 when x + y > z and x + z > y and y + z > x then 'Yes'
 else 'No'
 end as triangle
from triangle ;

Table point_2d holds the coordinates (x,y) of some unique points (more than two)
in a plane.

Write a query to find the shortest distance between these points rounded to 2
decimals.

x	y

Solution

01/22/2020:

613. Shortest Distance in a Line
Description

-1	-1
0	0
-1	-2

The shortest distance is 1.00 from point (-1,-1) to (-1,2). So the output should
be:

shortest
1.00

Note: The longest distance among all the points are less than 10000.

Write your MySQL query statement below
select round(min(dist), 2) as shortest
from (
 select if(a.x = b.x and a.y = b.y, 10000, sqrt(power(a.x - b.x, 2) + power(a.y
- b.y, 2))) as dist
 from point_2d as a, point_2d as b
) as d;

Table point holds the x coordinate of some points on x-axis in a plane, which
are all integers.

Write a query to find the shortest distance between two points in these points.

x
-1
0
2

Solution

01/13/2020:

619. Biggest Single Number
Description

The shortest distance is '1' obviously, which is from point '-1' to '0'. So the
output is as below:

shortest
1

Note: Every point is unique, which means there is no duplicates in table point.

Follow-up: What if all these points have an id and are arranged from the left
most to the right most of x axis?

Write your MySQL query statement below
select min(abs(a.x - b.x)) as shortest
from point as a, point as b
where a.x != b.x;

Table my_numbers contains many numbers in column num including duplicated ones.
Can you write a SQL query to find the biggest number, which only appears once.

+---+
|num|
+---+
| 8 |
| 8 |
| 3 |
| 3 |
| 1 |
| 4 |
| 5 |
| 6 |
For the sample data above, your query should return the following result:
+---+

Solution

01/18/2020:

620. Not Boring Movies
Description

|num|
+---+
| 6 |
Note:
If there is no such number, just output null.

Write your MySQL query statement below
select max(num) as num
from (
 select num
 from my_numbers
 group by num
 having count(num) = 1
) as n;

X city opened a new cinema, many people would like to go to this cinema. The
cinema also gives out a poster indicating the movies’ ratings and descriptions.
Please write a SQL query to output movies with an odd numbered ID and a
description that is not 'boring'. Order the result by rating.

For example, table cinema:

+---------+-----------+--------------+-----------+
| id | movie | description | rating |
+---------+-----------+--------------+-----------+
1	War	great 3D	8.9
2	Science	fiction	8.5
3	irish	boring	6.2
4	Ice song	Fantacy	8.6
5	House card	Interesting	9.1
+---------+-----------+--------------+-----------+			
For the example above, the output should be:			
+---------+-----------+--------------+-----------+			
id	movie	description	rating
+---------+-----------+--------------+-----------+

Solution

01/14/2020:

626. Exchange Seats
Description

| 5 | House card| Interesting| 9.1 |
| 1 | War | great 3D | 8.9 |
+---------+-----------+--------------+-----------+

Write your MySQL query statement below
select id, movie, description, rating
from cinema
where id % 2 = 1 and description <> 'boring'
order by rating desc;

Mary is a teacher in a middle school and she has a table seat storing students'
names and their corresponding seat ids.

The column id is continuous increment.

Mary wants to change seats for the adjacent students.

Can you write a SQL query to output the result for Mary?

+---------+---------+
| id | student |
+---------+---------+
1	Abbot
2	Doris
3	Emerson
4	Green
5	Jeames
+---------+---------+
For the sample input, the output is:

+---------+---------+
| id | student |
+---------+---------+

Solution

01/22/2020:

627. Swap Salary
Description

1	Doris
2	Abbot
3	Green
4	Emerson
5	Jeames
+---------+---------+
Note:
If the number of students is odd, there is no need to change the last one's
seat.

Write your MySQL query statement below
select if(mod(id, 2) = 0, id - 1, if(id < (select max(id) from seat), id + 1,
id)) as id, student
from seat
order by id;

Given a table salary, such as the one below, that has m=male and f=female
values. Swap all f and m values (i.e., change all f values to m and vice versa)
with a single update statement and no intermediate temp table.

Note that you must write a single update statement, DO NOT write any select
statement for this problem.

Example:

id	name	sex	salary
1	A	m	2500
2	B	f	1500
3	C	m	5500
4	D	f	500
After running your update statement, the above salary table should have the			
following rows:			
id	name	sex	salary
----	------	-----	--------

Solution

01/13/2020:

1045. Customers Who Bought All Products
Description

1	A	f	2500
2	B	m	1500
3	C	f	5500
4	D	m	500

Write your MySQL query statement below

update salary
set sex = case when sex = 'm' then 'f' else 'm' end;

update salary
set sex = if(sex = 'm', 'f', 'm');

Table: Customer

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| customer_id | int |
| product_key | int |
+-------------+---------+
product_key is a foreign key to Product table.
Table: Product

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| product_key | int |
+-------------+---------+
product_key is the primary key column for this table.

Write an SQL query for a report that provides the customer ids from the Customer
table that bought all the products in the Product table.

For example:

Solution

01/21/2020 (MySQL):

1050. Actors and Directors Who Cooperated At Least Three
Times

Customer table:
+-------------+-------------+
| customer_id | product_key |
+-------------+-------------+
1	5
2	6
3	5
3	6
1	6
+-------------+-------------+

Product table:
+-------------+
| product_key |
+-------------+
| 5 |
| 6 |
+-------------+

Result table:
+-------------+
| customer_id |
+-------------+
| 1 |
| 3 |
+-------------+
The customers who bought all the products (5 and 6) are customers with id 1 and
3.

Write your MySQL query statement below
select customer_id
from Customer
group by customer_id
having sum(distinct product_key) = (
 select sum(product_key) from Product
);

Description

Solution

01/13/2020:

Table: ActorDirector

+-------------+---------+
| Column Name | Type |
+-------------+---------+
actor_id	int
director_id	int
timestamp	int
+-------------+---------+
timestamp is the primary key column for this table.

Write a SQL query for a report that provides the pairs (actor_id, director_id)
where the actor have cooperated with the director at least 3 times.

Example:

ActorDirector table:
+-------------+-------------+-------------+
| actor_id | director_id | timestamp |
+-------------+-------------+-------------+
1	1	0
1	1	1
1	1	2
1	2	3
1	2	4
2	1	5
2	1	6
+-------------+-------------+-------------+

Result table:
+-------------+-------------+
| actor_id | director_id |
+-------------+-------------+
| 1 | 1 |
+-------------+-------------+
The only pair is (1, 1) where they cooperated exactly 3 times.

1068. Product Sales Analysis I
Description

Write your MySQL query statement below
select actor_id, director_id
from (
select actor_id, director_id, count(*) as cnt
from ActorDirector
group by actor_id, director_id
having cnt >= 3) as e;

select actor_id, director_id
from ActorDirector
group by actor_id, director_id
having count(*) >= 3;

Table: Sales

+-------------+-------+
| Column Name | Type |
+-------------+-------+
sale_id	int
product_id	int
year	int
quantity	int
price	int
+-------------+-------+
(sale_id, year) is the primary key of this table.
product_id is a foreign key to Product table.
Note that the price is per unit.
Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| product_id | int |
| product_name | varchar |
+--------------+---------+
product_id is the primary key of this table.

Write an SQL query that reports all product names of the products in the Sales
table along with their selling year and price.

Solution

01/13/2020:

1069. Product Sales Analysis II
Description

For example:

Sales table:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+
1	100	2008	10	5000
2	100	2009	12	5000
7	200	2011	15	9000
+---------+------------+------+----------+-------+

Product table:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
100	Nokia
200	Apple
300	Samsung
+------------+--------------+

Result table:
+--------------+-------+-------+
| product_name | year | price |
+--------------+-------+-------+
Nokia	2008	5000
Nokia	2009	5000
Apple	2011	9000
+--------------+-------+-------+

Write your MySQL query statement below
select distinct
 P.product_name, S.year, S.price
from
 (select distinct product_id, year, price from Sales) S
inner join
 Product as P
using (product_id);

Table: Sales
+-------------+-------+
| Column Name | Type |
+-------------+-------+
sale_id	int
product_id	int
year	int
quantity	int
price	int
+-------------+-------+
sale_id is the primary key of this table.
product_id is a foreign key to Product table.
Note that the price is per unit.

Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| product_id | int |
| product_name | varchar |
+--------------+---------+
product_id is the primary key of this table.

Write an SQL query that reports the total quantity sold for every product id.

The query result format is in the following example:

Sales table:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+
1	100	2008	10	5000
2	100	2009	12	5000
7	200	2011	15	9000
+---------+------------+------+----------+-------+

Product table:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
100	Nokia
200	Apple
300	Samsung
+------------+--------------+

Result table:
+--------------+----------------+

Solution

01/13/2020:

1070. Product Sales Analysis III
Description

| product_id | total_quantity |
+--------------+----------------+
| 100 | 22 |
| 200 | 15 |
+--------------+----------------+

Write your MySQL query statement below
select product_id, sum(quantity) as total_quantity
from Sales
group by product_id;

Table: Sales

+-------------+-------+
| Column Name | Type |
+-------------+-------+
sale_id	int
product_id	int
year	int
quantity	int
price	int
+-------------+-------+
sale_id is the primary key of this table.
product_id is a foreign key to Product table.
Note that the price is per unit.
Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| product_id | int |
| product_name | varchar |
+--------------+---------+
product_id is the primary key of this table.

Solution

01/22/2020:

1075. Project Employees I
Description

Write an SQL query that selects the product id, year, quantity, and price for
the first year of every product sold.

The query result format is in the following example:

Sales table:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+
1	100	2008	10	5000
2	100	2009	12	5000
7	200	2011	15	9000
+---------+------------+------+----------+-------+

Product table:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
100	Nokia
200	Apple
300	Samsung
+------------+--------------+

Result table:
+------------+------------+----------+-------+
| product_id | first_year | quantity | price |
+------------+------------+----------+-------+
| 100 | 2008 | 10 | 5000 |
| 200 | 2011 | 15 | 9000 |
+------------+------------+----------+-------+

select product_id, year as first_year, quantity, price
from Sales
where (product_id, year) in (select product_id, min(year) as year from Sales
group by product_id);

Table: Project

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| project_id | int |
| employee_id | int |
+-------------+---------+
(project_id, employee_id) is the primary key of this table.
employee_id is a foreign key to Employee table.
Table: Employee

+------------------+---------+
| Column Name | Type |
+------------------+---------+
employee_id	int
name	varchar
experience_years	int
+------------------+---------+
employee_id is the primary key of this table.

Write an SQL query that reports the average experience years of all the
employees for each project, rounded to 2 digits.

The query result format is in the following example:

Project table:
+-------------+-------------+
| project_id | employee_id |
+-------------+-------------+
1	1
1	2
1	3
2	1
2	4
+-------------+-------------+

Employee table:
+-------------+--------+------------------+
| employee_id | name | experience_years |
+-------------+--------+------------------+
1	Khaled	3
2	Ali	2
3	John	1
4	Doe	2
+-------------+--------+------------------+

Result table:
+-------------+---------------+

Solution

01/14/2020:

1076. Project Employees II
Description

| project_id | average_years |
+-------------+---------------+
| 1 | 2.00 |
| 2 | 2.50 |
+-------------+---------------+
The average experience years for the first project is (3 + 2 + 1) / 3 = 2.00 and
for the second project is (3 + 2) / 2 = 2.50

Write your MySQL query statement below
select project_id, round(avg(experience_years), 2) as average_years
from Project as p left join Employee as e on p.employee_id = e.employee_id
group by project_id;

Table: Project

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| project_id | int |
| employee_id | int |
+-------------+---------+
(project_id, employee_id) is the primary key of this table.
employee_id is a foreign key to Employee table.
Table: Employee

+------------------+---------+
| Column Name | Type |
+------------------+---------+
employee_id	int
name	varchar
experience_years	int
+------------------+---------+
employee_id is the primary key of this table.

Write an SQL query that reports all the projects that have the most employees.

Solution

01/18/2020:

The query result format is in the following example:

Project table:
+-------------+-------------+
| project_id | employee_id |
+-------------+-------------+
1	1
1	2
1	3
2	1
2	4
+-------------+-------------+

Employee table:
+-------------+--------+------------------+
| employee_id | name | experience_years |
+-------------+--------+------------------+
1	Khaled	3
2	Ali	2
3	John	1
4	Doe	2
+-------------+--------+------------------+

Result table:
+-------------+
| project_id |
+-------------+
| 1 |
+-------------+
The first project has 3 employees while the second one has 2.

Write your MySQL query statement below
select project_id
from Project
group by project_id
having count(employee_id) >= (
 select count(employee_id) as cnt
 from Project
 group by project_id
 order by cnt desc
 limit 1
);

1077. Project Employees III
Description

Table: Project

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| project_id | int |
| employee_id | int |
+-------------+---------+
(project_id, employee_id) is the primary key of this table.
employee_id is a foreign key to Employee table.
Table: Employee

+------------------+---------+
| Column Name | Type |
+------------------+---------+
employee_id	int
name	varchar
experience_years	int
+------------------+---------+
employee_id is the primary key of this table.

Write an SQL query that reports the most experienced employees in each project.
In case of a tie, report all employees with the maximum number of experience
years.

The query result format is in the following example:

Project table:
+-------------+-------------+
| project_id | employee_id |
+-------------+-------------+
1	1
1	2
1	3
2	1
2	4
+-------------+-------------+

Employee table:
+-------------+--------+------------------+
| employee_id | name | experience_years |
+-------------+--------+------------------+
| 1 | Khaled | 3 |

Solution

01/19/2020 (MySQL):

01/19/2020 (MySQL):

2	Ali	2
3	John	3
4	Doe	2
+-------------+--------+------------------+

Result table:
+-------------+---------------+
| project_id | employee_id |
+-------------+---------------+
1	1
1	3
2	1
+-------------+---------------+
Both employees with id 1 and 3 have the most experience among the employees of
the first project. For the second project, the employee with id 1 has the most
experience.

Write your MySQL query statement below
select p.project_id, e.employee_id
from
 (
 select project_id, max(experience_years) as max_years
 from
 Project as p
 join
 Employee as e
 on p.employee_id = e.employee_id
 group by project_id
) as q,
 Project as p,
 Employee as e
where p.project_id = q.project_id and p.employee_id = e.employee_id and
e.experience_years >= max_years;

1082. Sales Analysis I
Description

Write your MySQL query statement below
select p.project_id, e.employee_id
from Project as p, Employee as e
where p.employee_id = e.employee_id and (p.project_id, e.experience_years) in (
 select project_id, max(experience_years) as experience_years
 from Project as p join Employee as e on p.employee_id = e.employee_id
 group by project_id
)

Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
product_id	int
product_name	varchar
unit_price	int
+--------------+---------+
product_id is the primary key of this table.
Table: Sales

+-------------+---------+
| Column Name | Type |
+-------------+---------+
seller_id	int
product_id	int
buyer_id	int
sale_date	date
quantity	int
price	int
+------ ------+---------+
This table has no primary key, it can have repeated rows.
product_id is a foreign key to Product table.

Write an SQL query that reports the best seller by total sales price, If there
is a tie, report them all.

The query result format is in the following example:

Product table:

Solution

01/13/2020:

+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
1	S8	1000
2	G4	800
3	iPhone	1400
+------------+--------------+------------+

Sales table:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date | quantity | price |
+-----------+------------+----------+------------+----------+-------+
1	1	1	2019-01-21	2	2000
1	2	2	2019-02-17	1	800
2	2	3	2019-06-02	1	800
3	3	4	2019-05-13	2	2800
+-----------+------------+----------+------------+----------+-------+

Result table:
+-------------+
| seller_id |
+-------------+
| 1 |
| 3 |
+-------------+
Both sellers with id 1 and 3 sold products with the most total price of 2800.

Write your MySQL query statement below
select seller_id
from Sales
group by seller_id
having sum(price) >= (
 select sum(price) as total_price
 from Sales
 group by seller_id
 order by total_price desc
 limit 1);

select seller_id
from Sales
group by seller_id
having sum(price) >= all(
select sum(price)
from Sales

1083. Sales Analysis II
Description

group by seller_id
);

Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
product_id	int
product_name	varchar
unit_price	int
+--------------+---------+
product_id is the primary key of this table.
Table: Sales

+-------------+---------+
| Column Name | Type |
+-------------+---------+
seller_id	int
product_id	int
buyer_id	int
sale_date	date
quantity	int
price	int
+------ ------+---------+
This table has no primary key, it can have repeated rows.
product_id is a foreign key to Product table.

Write an SQL query that reports the buyers who have bought S8 but not iPhone.
Note that S8 and iPhone are products present in the Product table.

The query result format is in the following example:

Product table:
+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
1	S8	1000
2	G4	800
3	iPhone	1400
+------------+--------------+------------+

Solution

01/18/2020:

01/18/2020:

1084. Sales Analysis III
Description

Sales table:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date | quantity | price |
+-----------+------------+----------+------------+----------+-------+
1	1	1	2019-01-21	2	2000
1	2	2	2019-02-17	1	800
2	1	3	2019-06-02	1	800
3	3	3	2019-05-13	2	2800
+-----------+------------+----------+------------+----------+-------+

Result table:
+-------------+
| buyer_id |
+-------------+
| 1 |
+-------------+
The buyer with id 1 bought an S8 but didn't buy an iPhone. The buyer with id 3
bought both.

Write your MySQL query statement below
select distinct s.buyer_id
from Sales as s join Product as p on s.product_id = p.product_id
where product_name = 'S8' and s.buyer_id not in (
 select buyer_id
 from Sales as s join Product as p on s.product_id = p.product_id
 where product_name = 'iPhone'
);

Write your MySQL query statement below
select buyer_id
from Sales join Product using(product_id)
group by buyer_id
having sum(product_name = 'S8') > 0 and sum(product_name = 'iPhone') = 0;

Table: Product

+--------------+---------+
| Column Name | Type |
+--------------+---------+
product_id	int
product_name	varchar
unit_price	int
+--------------+---------+
product_id is the primary key of this table.
Table: Sales

+-------------+---------+
| Column Name | Type |
+-------------+---------+
seller_id	int
product_id	int
buyer_id	int
sale_date	date
quantity	int
price	int
+------ ------+---------+
This table has no primary key, it can have repeated rows.
product_id is a foreign key to Product table.

Write an SQL query that reports the products that were only sold in spring 2019.
That is, between 2019-01-01 and 2019-03-31 inclusive.

The query result format is in the following example:

Product table:
+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
1	S8	1000
2	G4	800
3	iPhone	1400
+------------+--------------+------------+

Sales table:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date | quantity | price |
+-----------+------------+----------+------------+----------+-------+
1	1	1	2019-01-21	2	2000
1	2	2	2019-02-17	1	800
2	2	3	2019-06-02	1	800
3	3	4	2019-05-13	2	2800

Solution

01/18/2020:

1112. Highest Grade For Each Student
Description

+-----------+------------+----------+------------+----------+-------+

Result table:
+-------------+--------------+
| product_id | product_name |
+-------------+--------------+
| 1 | S8 |
+-------------+--------------+
The product with id 1 was only sold in spring 2019 while the other two were sold
after.

select product_id, product_name
from Sales inner join product using(product_id)
group by product_id
having sum(if(sale_date between '2019-01-01' and '2019-03-31', 1, 0)) =
sum(if(sale_date, 1, 0));

Table: Enrollments

+---------------+---------+
| Column Name | Type |
+---------------+---------+
student_id	int
course_id	int
grade	int
+---------------+---------+
(student_id, course_id) is the primary key of this table.

Write a SQL query to find the highest grade with its corresponding course for
each student. In case of a tie, you should find the course with the smallest
course_id. The output must be sorted by increasing student_id.

The query result format is in the following example:

Enrollments table:
+------------+-------------------+
| student_id | course_id | grade |

Solution

01/21/2020 (MySQL):

1113. Reported Posts
Description

+------------+-----------+-------+
2	2	95
2	3	95
1	1	90
1	2	99
3	1	80
3	2	75
3	3	82
+------------+-----------+-------+

Result table:
+------------+-------------------+
| student_id | course_id | grade |
+------------+-----------+-------+
1	2	99
2	2	95
3	3	82
+------------+-----------+-------+

Write your MySQL query statement below
select student_id, min(course_id) as course_id, grade
from Enrollments
where (student_id, grade) in (
 select student_id, max(grade)
 from Enrollments
 group by student_id
)
group by student_id
order by student_id asc;

Table: Actions

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| post_id | int |

Solution

01/14/2020:

action_date	date
action	enum
extra	varchar
+---------------+---------+
There is no primary key for this table, it may have duplicate rows.
The action column is an ENUM type of ('view', 'like', 'reaction', 'comment',
'report', 'share').
The extra column has optional information about the action such as a reason for
report or a type of reaction.

Write an SQL query that reports the number of posts reported yesterday for each
report reason. Assume today is 2019-07-05.

The query result format is in the following example:

Actions table:
+---------+---------+-------------+--------+--------+
| user_id | post_id | action_date | action | extra |
+---------+---------+-------------+--------+--------+
1	1	2019-07-01	view	null
1	1	2019-07-01	like	null
1	1	2019-07-01	share	null
2	4	2019-07-04	view	null
2	4	2019-07-04	report	spam
3	4	2019-07-04	view	null
3	4	2019-07-04	report	spam
4	3	2019-07-02	view	null
4	3	2019-07-02	report	spam
5	2	2019-07-04	view	null
5	2	2019-07-04	report	racism
5	5	2019-07-04	view	null
5	5	2019-07-04	report	racism
+---------+---------+-------------+--------+--------+

Result table:
+---------------+--------------+
| report_reason | report_count |
+---------------+--------------+
| spam | 1 |
| racism | 2 |
+---------------+--------------+
Note that we only care about report reasons with non zero number of reports.

01/14/2020:

1126. Active Businesses
Description

Write your MySQL query statement below
select extra as report_reason, count(*) as report_count
from (
 select post_id, extra
 from Actions
 where action_date = '2019-07-04' and action = 'report'
 group by post_id, extra) as t
group by t.extra;

Write your MySQL query statement below
select extra as report_reason, count(distinct post_id) as report_count
from Actions
where action_date = '2019-07-04' and action = 'report'
group by extra;

Table: Events

+---------------+---------+
| Column Name | Type |
+---------------+---------+
business_id	int
event_type	varchar
occurences	int
+---------------+---------+
(business_id, event_type) is the primary key of this table.
Each row in the table logs the info that an event of some type occured at some
business for a number of times.

Write an SQL query to find all active businesses.

An active business is a business that has more than one event type with
occurences greater than the average occurences of that event type among all
businesses.

The query result format is in the following example:

Events table:
+-------------+------------+------------+

Solution

01/21/2020:

1141. User Activity for the Past 30 Days I
Description

| business_id | event_type | occurences |
+-------------+------------+------------+
1	reviews	7
3	reviews	3
1	ads	11
2	ads	7
3	ads	6
1	page views	3
2	page views	12
+-------------+------------+------------+

Result table:
+-------------+
| business_id |
+-------------+
| 1 |
+-------------+
Average for 'reviews', 'ads' and 'page views' are (7+3)/2=5, (11+7+6)/3=8,
(3+12)/2=7.5 respectively.
Business with id 1 has 7 'reviews' events (more than 5) and 11 'ads' events
(more than 8) so it is an active business.

Write your MySQL query statement below
select business_id
from Events e,
 (
 select event_type, avg(occurences) as avg_occurences
 from Events
 group by event_type
) as a
where e.event_type = a.event_type and e.occurences > a.avg_occurences
group by e.business_id
having count(*) > 1;

Table: Activity

+---------------+---------+

Solution

| Column Name | Type |
+---------------+---------+
user_id	int
session_id	int
activity_date	date
activity_type	enum
+---------------+---------+
There is no primary key for this table, it may have duplicate rows.
The activity_type column is an ENUM of type ('open_session', 'end_session',
'scroll_down', 'send_message').
The table shows the user activities for a social media website.
Note that each session belongs to exactly one user.

Write an SQL query to find the daily active user count for a period of 30 days
ending 2019-07-27 inclusively. A user was active on some day if he/she made at
least one activity on that day.

The query result format is in the following example:

Activity table:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
1	1	2019-07-20	open_session
1	1	2019-07-20	scroll_down
1	1	2019-07-20	end_session
2	4	2019-07-20	open_session
2	4	2019-07-21	send_message
2	4	2019-07-21	end_session
3	2	2019-07-21	open_session
3	2	2019-07-21	send_message
3	2	2019-07-21	end_session
4	3	2019-06-25	open_session
4	3	2019-06-25	end_session
+---------+------------+---------------+---------------+

Result table:
+------------+--------------+
| day | active_users |
+------------+--------------+
| 2019-07-20 | 2 |
| 2019-07-21 | 2 |
+------------+--------------+
Note that we do not care about days with zero active users.

01/18/2020:

1142. User Activity for the Past 30 Days II
Description

Write your MySQL query statement below
select activity_date as day, count(distinct user_id) as active_users
from Activity
where activity_date between '2019-06-28' and '2019-07-27'
group by day;

Table: Activity

+---------------+---------+
| Column Name | Type |
+---------------+---------+
user_id	int
session_id	int
activity_date	date
activity_type	enum
+---------------+---------+
There is no primary key for this table, it may have duplicate rows.
The activity_type column is an ENUM of type ('open_session', 'end_session',
'scroll_down', 'send_message').
The table shows the user activities for a social media website.
Note that each session belongs to exactly one user.

Write an SQL query to find the average number of sessions per user for a period
of 30 days ending 2019-07-27 inclusively, rounded to 2 decimal places. The
sessions we want to count for a user are those with at least one activity in
that time period.

The query result format is in the following example:

Activity table:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
1	1	2019-07-20	open_session
1	1	2019-07-20	scroll_down
1	1	2019-07-20	end_session
2	4	2019-07-20	open_session
2	4	2019-07-21	send_message

Solution

01/18/2020:

1148. Article Views I
Description

2	4	2019-07-21	end_session
3	2	2019-07-21	open_session
3	2	2019-07-21	send_message
3	2	2019-07-21	end_session
3	5	2019-07-21	open_session
3	5	2019-07-21	scroll_down
3	5	2019-07-21	end_session
4	3	2019-06-25	open_session
4	3	2019-06-25	end_session
+---------+------------+---------------+---------------+

Result table:
+---------------------------+
| average_sessions_per_user |
+---------------------------+
| 1.33 |
+---------------------------+
User 1 and 2 each had 1 session in the past 30 days while user 3 had 2 sessions
so the average is (1 + 1 + 2) / 3 = 1.33.

Write your MySQL query statement below
select round(ifnull(sum(sessions) / count(user_id), 0), 2) as
average_sessions_per_user
from (
 select distinct user_id, count(distinct session_id) as sessions
 from Activity
 where activity_date between '2019-06-28' and '2019-07-27'
 group by user_id
 having count(*) >= 1
) as u;

Table: Views

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| article_id | int |

Solution

01/13/2020:

author_id	int
viewer_id	int
view_date	date
+---------------+---------+
There is no primary key for this table, it may have duplicate rows.
Each row of this table indicates that some viewer viewed an article (written by
some author) on some date.
Note that equal author_id and viewer_id indicate the same person.

Write an SQL query to find all the authors that viewed at least one of their own
articles, sorted in ascending order by their id.

The query result format is in the following example:

Views table:
+------------+-----------+-----------+------------+
| article_id | author_id | viewer_id | view_date |
+------------+-----------+-----------+------------+
1	3	5	2019-08-01
1	3	6	2019-08-02
2	7	7	2019-08-01
2	7	6	2019-08-02
4	7	1	2019-07-22
3	4	4	2019-07-21
3	4	4	2019-07-21
+------------+-----------+-----------+------------+

Result table:
+------+
| id |
+------+
| 4 |
| 7 |
+------+

Write your MySQL query statement below
select distinct author_id as id
from Views
where author_id = viewer_id
order by author_id;

1164. Product Price at a Given Date
Description

Solution

01/22/2020:

Table: Products

+---------------+---------+
| Column Name | Type |
+---------------+---------+
product_id	int
new_price	int
change_date	date
+---------------+---------+
(product_id, change_date) is the primary key of this table.
Each row of this table indicates that the price of some product was changed to a
new price at some date.

Write an SQL query to find the prices of all products on 2019-08-16. Assume the
price of all products before any change is 10.

The query result format is in the following example:

Products table:
+------------+-----------+-------------+
| product_id | new_price | change_date |
+------------+-----------+-------------+
1	20	2019-08-14
2	50	2019-08-14
1	30	2019-08-15
1	35	2019-08-16
2	65	2019-08-17
3	20	2019-08-18
+------------+-----------+-------------+

Result table:
+------------+-------+
| product_id | price |
+------------+-------+
2	50
1	35
3	10
+------------+-------+

1173. Immediate Food Delivery I
Description

Write your MySQL query statement below

select
 i.product_id,
 max(if(i.product_id not in (select product_id from Products where change_date
<= date '2019-08-16' group by product_id), 10, (select new_price from Products
where product_id = i.product_id and product_id = q.product_id and change_date =
q.max_change_date))) as price
from
 (select distinct product_id from Products) as i,
 (
 select product_id, max(change_date) as max_change_date
 from Products
 where change_date <= date '2019-08-16'
 group by product_id
) as q
group by i.product_id;

Table: Delivery

+-----------------------------+---------+
| Column Name | Type |
+-----------------------------+---------+
delivery_id	int
customer_id	int
order_date	date
customer_pref_delivery_date	date
+-----------------------------+---------+
delivery_id is the primary key of this table.
The table holds information about food delivery to customers that make orders at
some date and specify a preferred delivery date (on the same order date or after
it).

If the preferred delivery date of the customer is the same as the order date
then the order is called immediate otherwise it's called scheduled.

Write an SQL query to find the percentage of immediate orders in the table,
rounded to 2 decimal places.

The query result format is in the following example:

Solution

01/13/2020:

1174. Immediate Food Delivery II
Description

Delivery table:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
1	1	2019-08-01	2019-08-02
2	5	2019-08-02	2019-08-02
3	1	2019-08-11	2019-08-11
4	3	2019-08-24	2019-08-26
5	4	2019-08-21	2019-08-22
6	2	2019-08-11	2019-08-13
+-------------+-------------+------------+-----------------------------+

Result table:
+----------------------+
| immediate_percentage |
+----------------------+
| 33.33 |
+----------------------+
The orders with delivery id 2 and 3 are immediate while the others are
scheduled.

Write your MySQL query statement below
select round(
(select count(*) from Delivery where order_date =
customer_pref_delivery_date) /
(select count(*) from Delivery) * 100,
2) as immediate_percentage;

select round(
 sum(case when order_date = customer_pref_delivery_date then 1 else 0 end) /
count(delivery_id) * 100
, 2) as immediate_percentage
from Delivery;

Table: Delivery

+-----------------------------+---------+
| Column Name | Type |
+-----------------------------+---------+
delivery_id	int
customer_id	int
order_date	date
customer_pref_delivery_date	date
+-----------------------------+---------+
delivery_id is the primary key of this table.
The table holds information about food delivery to customers that make orders at
some date and specify a preferred delivery date (on the same order date or after
it).

If the preferred delivery date of the customer is the same as the order date
then the order is called immediate otherwise it's called scheduled.

The first order of a customer is the order with the earliest order date that
customer made. It is guaranteed that a customer has exactly one first order.

Write an SQL query to find the percentage of immediate orders in the first
orders of all customers, rounded to 2 decimal places.

The query result format is in the following example:

Delivery table:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
1	1	2019-08-01	2019-08-02
2	2	2019-08-02	2019-08-02
3	1	2019-08-11	2019-08-12
4	3	2019-08-24	2019-08-24
5	3	2019-08-21	2019-08-22
6	2	2019-08-11	2019-08-13
7	4	2019-08-09	2019-08-09
+-------------+-------------+------------+-----------------------------+

Result table:
+----------------------+
| immediate_percentage |
+----------------------+
| 50.00 |
+----------------------+
The customer id 1 has a first order with delivery id 1 and it is scheduled.
The customer id 2 has a first order with delivery id 2 and it is immediate.
The customer id 3 has a first order with delivery id 5 and it is scheduled.
The customer id 4 has a first order with delivery id 7 and it is immediate.
Hence, half the customers have immediate first orders.

Solution

01/22/2020:

1179. Reformat Department Table
Description

Write your MySQL query statement below
select round(sum(if(order_date = customer_pref_delivery_date, 1, 0)) / count(*)
* 100, 2) as immediate_percentage
from Delivery
where (customer_id, order_date) in (
 select customer_id, min(order_date)
 from Delivery
 group by customer_id
)

Table: Department

+---------------+---------+
| Column Name | Type |
+---------------+---------+
id	int
revenue	int
month	varchar
+---------------+---------+
(id, month) is the primary key of this table.
The table has information about the revenue of each department per month.
The month has values in
["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"].

Write an SQL query to reformat the table such that there is a department id
column and a revenue column for each month.

The query result format is in the following example:

Department table:
+------+---------+-------+
| id | revenue | month |
+------+---------+-------+
| 1 | 8000 | Jan |
| 2 | 9000 | Jan |

Solution

01/13/2020:

3	10000	Feb
1	7000	Feb
1	6000	Mar
+------+---------+-------+

Result table:
+------+-------------+-------------+-------------+-----+-------------+
| id | Jan_Revenue | Feb_Revenue | Mar_Revenue | ... | Dec_Revenue |
+------+-------------+-------------+-------------+-----+-------------+
1	8000	7000	6000	...	null
2	9000	null	null	...	null
3	null	10000	null	...	null
+------+-------------+-------------+-------------+-----+-------------+

Note that the result table has 13 columns (1 for the department id + 12 for the
months).

Write your MySQL query statement below
select
id,
sum(case when month = 'Jan' then revenue else null end) as Jan_Revenue,
sum(case when month = 'Feb' then revenue else null end) as Feb_Revenue,
sum(case when month = 'Mar' then revenue else null end) as Mar_Revenue,
sum(case when month = 'Apr' then revenue else null end) as Apr_Revenue,
sum(case when month = 'May' then revenue else null end) as May_Revenue,
sum(case when month = 'Jun' then revenue else null end) as Jun_Revenue,
sum(case when month = 'Jul' then revenue else null end) as Jul_Revenue,
sum(case when month = 'Aug' then revenue else null end) as Aug_Revenue,
sum(case when month = 'Sep' then revenue else null end) as Sep_Revenue,
sum(case when month = 'Oct' then revenue else null end) as Oct_Revenue,
sum(case when month = 'Nov' then revenue else null end) as Nov_Revenue,
sum(case when month = 'Dec' then revenue else null end) as Dec_Revenue
from Department
group by id;

select
 id,
 sum(if(month = 'Jan', revenue, null)) as Jan_Revenue,
 sum(if(month = 'Feb', revenue, null)) as Feb_Revenue,
 sum(if(month = 'Mar', revenue, null)) as Mar_Revenue,
 sum(if(month = 'Apr', revenue, null)) as Apr_Revenue,
 sum(if(month = 'May', revenue, null)) as May_Revenue,
 sum(if(month = 'Jun', revenue, null)) as Jun_Revenue,
 sum(if(month = 'Jul', revenue, null)) as Jul_Revenue,

1193. Monthly Transactions I
Description

 sum(if(month = 'Aug', revenue, null)) as Aug_Revenue,
 sum(if(month = 'Sep', revenue, null)) as Sep_Revenue,
 sum(if(month = 'Oct', revenue, null)) as Oct_Revenue,
 sum(if(month = 'Nov', revenue, null)) as Nov_Revenue,
 sum(if(month = 'Dec', revenue, null)) as Dec_Revenue
from Department
group by id;

Table: Transactions

+---------------+---------+
| Column Name | Type |
+---------------+---------+
id	int
country	varchar
state	enum
amount	int
trans_date	date
+---------------+---------+
id is the primary key of this table.
The table has information about incoming transactions.
The state column is an enum of type ["approved", "declined"].

Write an SQL query to find for each month and country, the number of
transactions and their total amount, the number of approved transactions and
their total amount.

The query result format is in the following example:

Transactions table:
+------+---------+----------+--------+------------+
| id | country | state | amount | trans_date |
+------+---------+----------+--------+------------+
121	US	approved	1000	2018-12-18
122	US	declined	2000	2018-12-19
123	US	approved	2000	2019-01-01
124	DE	approved	2000	2019-01-07
+------+---------+----------+--------+------------+

Result table:

Solution

01/21/2020 (MySQL):

1204. Last Person to Fit in the Elevator
Description

+----------+---------+-------------+----------------+--------------------+------
-----------------+
| month | country | trans_count | approved_count | trans_total_amount |
approved_total_amount |
+----------+---------+-------------+----------------+--------------------+------
-----------------+
| 2018-12 | US | 2 | 1 | 3000 | 1000
 |
| 2019-01 | US | 1 | 1 | 2000 | 2000
 |
| 2019-01 | DE | 1 | 1 | 2000 | 2000
 |
+----------+---------+-------------+----------------+--------------------+------
-----------------+

Write your MySQL query statement below
select
 date_format(trans_date, '%Y-%m') as month, country,
 count(*) as trans_count,
 sum(if(state='approved', 1, 0)) as approved_count,
 sum(amount) as trans_total_amount,
 sum(if(state='approved', amount, 0)) as approved_total_amount
from Transactions
group by date_format(trans_date, '%Y-%m'), country;

Table: Queue

+-------------+---------+
| Column Name | Type |
+-------------+---------+
person_id	int
person_name	varchar
weight	int
turn	int
+-------------+---------+
person_id is the primary key column for this table.
This table has the information about all people waiting for an elevator.

Solution

01/21/2020 (MySQL):

The person_id and turn columns will contain all numbers from 1 to n, where n is
the number of rows in the table.

The maximum weight the elevator can hold is 1000.

Write an SQL query to find the person_name of the last person who will fit in
the elevator without exceeding the weight limit. It is guaranteed that the
person who is first in the queue can fit in the elevator.

The query result format is in the following example:

Queue table
+-----------+-------------------+--------+------+
| person_id | person_name | weight | turn |
+-----------+-------------------+--------+------+
5	George Washington	250	1
3	John Adams	350	2
6	Thomas Jefferson	400	3
2	Will Johnliams	200	4
4	Thomas Jefferson	175	5
1	James Elephant	500	6
+-----------+-------------------+--------+------+

Result table
+-------------------+
| person_name |
+-------------------+
| Thomas Jefferson |
+-------------------+

Queue table is ordered by turn in the example for simplicity.
In the example George Washington(id 5), John Adams(id 3) and Thomas Jefferson(id
6) will enter the elevator as their weight sum is 250 + 350 + 400 = 1000.
Thomas Jefferson(id 6) is the last person to fit in the elevator because he has
the last turn in these three people.

Write your MySQL query statement below
select person_name
from
(
 select
 person_name, @total_weight := @total_weight + weight as total_weight
 from

1211. Queries Quality and Percentage
Description

 Queue,
 (select @total_weight := 0) as tmp
 order by turn
) as t
where total_weight <= 1000
order by total_weight desc
limit 1;

Write your MySQL query statement below
select q1.person_name
from Queue as q1 join Queue as q2 on q1.turn >= q2.turn
group by q1.turn
having sum(q2.weight) <= 1000
order by sum(q2.weight) desc
limit 1;

Table: Queries

+-------------+---------+
| Column Name | Type |
+-------------+---------+
query_name	varchar
result	varchar
position	int
rating	int
+-------------+---------+
There is no primary key for this table, it may have duplicate rows.
This table contains information collected from some queries on a database.
The position column has a value from 1 to 500.
The rating column has a value from 1 to 5. Query with rating less than 3 is a
poor query.

We define query quality as:

The average of the ratio between query rating and its position.

We also define poor query percentage as:

The percentage of all queries with rating less than 3.

Solution

01/14/2020:

Write an SQL query to find each query_name, the quality and
poor_query_percentage.

Both quality and poor_query_percentage should be rounded to 2 decimal places.

The query result format is in the following example:

Queries table:
+------------+-------------------+----------+--------+
| query_name | result | position | rating |
+------------+-------------------+----------+--------+
Dog	Golden Retriever	1	5
Dog	German Shepherd	2	5
Dog	Mule	200	1
Cat	Shirazi	5	2
Cat	Siamese	3	3
Cat	Sphynx	7	4
+------------+-------------------+----------+--------+

Result table:
+------------+---------+-----------------------+
| query_name | quality | poor_query_percentage |
+------------+---------+-----------------------+
| Dog | 2.50 | 33.33 |
| Cat | 0.66 | 33.33 |
+------------+---------+-----------------------+

Dog queries quality is ((5 / 1) + (5 / 2) + (1 / 200)) / 3 = 2.50
Dog queries poor_ query_percentage is (1 / 3) * 100 = 33.33

Cat queries quality equals ((2 / 5) + (3 / 3) + (4 / 7)) / 3 = 0.66
Cat queries poor_ query_percentage is (1 / 3) * 100 = 33.33

01/14/2020:

1212. Team Scores in Football Tournament
Description

Write your MySQL query statement below
select q.query_name, round(ifnull(avg(rating / position), 0), 2) as quality,
round(ifnull(cnt / count(q.rating) * 100, 0), 2) as poor_query_percentage
from
 Queries as q
 left join
 (select query_name, count(*) as cnt
 from Queries
 where rating < 3
 group by query_name) as p
 on q.query_name = p.query_name
group by q.query_name;

Write your MySQL query statement below
select query_name, round(avg(rating / position), 2) as quality,
round(avg(if(rating < 3, 1, 0)) * 100, 2) as poor_query_percentage
from Queries
group by query_name;

Table: Teams

+---------------+----------+
| Column Name | Type |
+---------------+----------+
| team_id | int |
| team_name | varchar |
+---------------+----------+
team_id is the primary key of this table.
Each row of this table represents a single football team.
Table: Matches

+---------------+---------+
| Column Name | Type |
+---------------+---------+
match_id	int
host_team	int
guest_team	int
host_goals	int
guest_goals	int

+---------------+---------+
match_id is the primary key of this table.
Each row is a record of a finished match between two different teams.
Teams host_team and guest_team are represented by their IDs in the teams table
(team_id) and they scored host_goals and guest_goals goals respectively.

You would like to compute the scores of all teams after all matches. Points are
awarded as follows:
A team receives three points if they win a match (Score strictly more goals than
the opponent team).
A team receives one point if they draw a match (Same number of goals as the
opponent team).
A team receives no points if they lose a match (Score less goals than the
opponent team).
Write an SQL query that selects the team_id, team_name and num_points of each
team in the tournament after all described matches. Result table should be
ordered by num_points (decreasing order). In case of a tie, order the records by
team_id (increasing order).

The query result format is in the following example:

Teams table:
+-----------+--------------+
| team_id | team_name |
+-----------+--------------+
10	Leetcode FC
20	NewYork FC
30	Atlanta FC
40	Chicago FC
50	Toronto FC
+-----------+--------------+

Matches table:
+------------+--------------+---------------+-------------+--------------+
| match_id | host_team | guest_team | host_goals | guest_goals |
+------------+--------------+---------------+-------------+--------------+
1	10	20	3	0
2	30	10	2	2
3	10	50	5	1
4	20	30	1	0
5	50	30	1	0
+------------+--------------+---------------+-------------+--------------+

Result table:
+------------+--------------+---------------+
| team_id | team_name | num_points |
+------------+--------------+---------------+
| 10 | Leetcode FC | 7 |

Solution

01/19/2020 (MySQL):

01/19/2020 (MySQL):

20	NewYork FC	3
50	Toronto FC	3
30	Atlanta FC	1
40	Chicago FC	0
+------------+--------------+---------------+

Write your MySQL query statement below
select t.team_id, team_name, ifnull(num_points, 0) as num_points
from
 Teams as t
 left join
 (
 select team_id, sum(num_points) as num_points
 from
 (
 select
 host_team as team_id,
 sum(case
 when host_goals > guest_goals then 3
 when host_goals = guest_goals then 1
 else 0 end) as num_points
 from Matches
 group by host_team
 union all
 select
 guest_team as team_id,
 sum(case
 when host_goals < guest_goals then 3
 when host_goals = guest_goals then 1
 else 0 end) as num_points
 from Matches
 group by guest_team
) as u
 group by team_id
) as r
 on t.team_id = r.team_id
order by num_points desc, team_id asc;

Write your MySQL query statement below
select team_id, team_name,
 sum(if(team_id = host_team,

1225. Report Contiguous Dates
Description

 case
 when host_goals > guest_goals then 3
 when host_goals = guest_goals then 1
 else 0 end,
 0))
 + sum(if(team_id = guest_team,
 case
 when host_goals < guest_goals then 3
 when host_goals = guest_goals then 1
 else 0 end,
 0)) as num_points
from Teams as t, Matches as m
group by team_id
order by num_points desc, team_id asc;

Table: Failed

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| fail_date | date |
+--------------+---------+
Primary key for this table is fail_date.
Failed table contains the days of failed tasks.
Table: Succeeded

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| success_date | date |
+--------------+---------+
Primary key for this table is success_date.
Succeeded table contains the days of succeeded tasks.

A system is running one task every day. Every task is independent of the
previous tasks. The tasks can fail or succeed.

Write an SQL query to generate a report of period_state for each continuous
interval of days in the period from 2019-01-01 to 2019-12-31.

period_state is 'failed' if tasks in this interval failed or 'succeeded' if
tasks in this interval succeeded. Interval of days are retrieved as start_date
and end_date.

Order result by start_date.

The query result format is in the following example:

Failed table:
+-------------------+
| fail_date |
+-------------------+
| 2018-12-28 |
| 2018-12-29 |
| 2019-01-04 |
| 2019-01-05 |
+-------------------+

Succeeded table:
+-------------------+
| success_date |
+-------------------+
| 2018-12-30 |
| 2018-12-31 |
| 2019-01-01 |
| 2019-01-02 |
| 2019-01-03 |
| 2019-01-06 |
+-------------------+

Result table:
+--------------+--------------+--------------+
| period_state | start_date | end_date |
+--------------+--------------+--------------+
succeeded	2019-01-01	2019-01-03
failed	2019-01-04	2019-01-05
succeeded	2019-01-06	2019-01-06
+--------------+--------------+--------------+

The report ignored the system state in 2018 as we care about the system in the
period 2019-01-01 to 2019-12-31.
From 2019-01-01 to 2019-01-03 all tasks succeeded and the system state was
"succeeded".
From 2019-01-04 to 2019-01-05 all tasks failed and system state was "failed".
From 2019-01-06 to 2019-01-06 all tasks succeeded and system state was
"succeeded".

Solution

01/19/2020 (MySQL):

Write your MySQL query statement below
select period_state, start_date, end_date
from
 (
 select 'failed' as period_state, f1.fail_date as start_date, f2.fail_date as
end_date
 from
 (
 select fail_date
 from Failed
 where fail_date between '2019-01-01' and '2019-12-31' and
date_sub(fail_date, interval 1 day) not in (select * from Failed where fail_date
between '2019-01-01' and '2019-12-31')
) as f1,
 (
 select fail_date
 from Failed
 where fail_date between '2019-01-01' and '2019-12-31' and
date_add(fail_date, interval 1 day) not in (select * from Failed where fail_date
between '2019-01-01' and '2019-12-31')
) as f2
 where f1.fail_date <= f2.fail_date
 group by f1.fail_date
 union
 select 'succeeded' as period_state, s1.success_date as start_date,
s2.success_date as end_date
 from
 (
 select success_date
 from Succeeded
 where success_date between '2019-01-01' and '2019-12-31' and
date_sub(success_date, interval 1 day) not in (select * from Succeeded where
success_date between '2019-01-01' and '2019-12-31')
) as s1,
 (
 select success_date
 from Succeeded
 where success_date between '2019-01-01' and '2019-12-31' and
date_add(success_date, interval 1 day) not in (select * from Succeeded where
success_date between '2019-01-01' and '2019-12-31')
) as s2
 where s1.success_date <= s2.success_date
 group by s1.success_date
) as p
order by start_date;

1241. Number of Comments per Post
Description

Table: Submissions

+---------------+----------+
| Column Name | Type |
+---------------+----------+
| sub_id | int |
| parent_id | int |
+---------------+----------+
There is no primary key for this table, it may have duplicate rows.
Each row can be a post or comment on the post.
parent_id is null for posts.
parent_id for comments is sub_id for another post in the table.

Write an SQL query to find number of comments per each post.

Result table should contain post_id and its corresponding number_of_comments,
and must be sorted by post_id in ascending order.

Submissions may contain duplicate comments. You should count the number of
unique comments per post.

Submissions may contain duplicate posts. You should treat them as one post.

The query result format is in the following example:

Submissions table:
+---------+------------+
| sub_id | parent_id |
+---------+------------+
1	Null
2	Null
1	Null
12	Null
3	1
5	2
3	1
4	1
9	1
10	2
6	7

Solution

01/13/2020:

+---------+------------+

Result table:
+---------+--------------------+
| post_id | number_of_comments |
+---------+--------------------+
1	3
2	2
12	0
+---------+--------------------+

The post with id 1 has three comments in the table with id 3, 4 and 9. The
comment with id 3 is repeated in the table, we counted it only once.
The post with id 2 has two comments in the table with id 5 and 10.
The post with id 12 has no comments in the table.
The comment with id 6 is a comment on a deleted post with id 7 so we ignored it.

Write your MySQL query statement below
select post_id, ifnull(number_of_comments, 0) as number_of_comments
from (
select distinct sub_id as post_id
from Submissions
where parent_id is null
) as s1
left join
(
select parent_id, count(*) as number_of_comments
from (
select distinct sub_id, parent_id
from Submissions
) as ds
where parent_id is not null
group by parent_id
) as s2
on s1.post_id = s2.parent_id
order by post_id;

select t.post_id, count(distinct s.sub_id) as number_of_comments
from (
 select distinct sub_id as post_id
 from Submissions
 where parent_id is null
) as t
 left join

1251. Average Selling Price
Description

 Submissions as s
 on t.post_id = s.parent_id
group by t.post_id
order by t.post_id;

Table: Prices

+---------------+---------+
| Column Name | Type |
+---------------+---------+
product_id	int
start_date	date
end_date	date
price	int
+---------------+---------+
(product_id, start_date, end_date) is the primary key for this table.
Each row of this table indicates the price of the product_id in the period from
start_date to end_date.
For each product_id there will be no two overlapping periods. That means there
will be no two intersecting periods for the same product_id.

Table: UnitsSold

+---------------+---------+
| Column Name | Type |
+---------------+---------+
product_id	int
purchase_date	date
units	int
+---------------+---------+
There is no primary key for this table, it may contain duplicates.
Each row of this table indicates the date, units and product_id of each product
sold.

Write an SQL query to find the average selling price for each product.

average_price should be rounded to 2 decimal places.

The query result format is in the following example:

Solution

01/13/2020:

1264. Page Recommendations

Prices table:
+------------+------------+------------+--------+
| product_id | start_date | end_date | price |
+------------+------------+------------+--------+
1	2019-02-17	2019-02-28	5
1	2019-03-01	2019-03-22	20
2	2019-02-01	2019-02-20	15
2	2019-02-21	2019-03-31	30
+------------+------------+------------+--------+

UnitsSold table:
+------------+---------------+-------+
| product_id | purchase_date | units |
+------------+---------------+-------+
1	2019-02-25	100
1	2019-03-01	15
2	2019-02-10	200
2	2019-03-22	30
+------------+---------------+-------+

Result table:
+------------+---------------+
| product_id | average_price |
+------------+---------------+
| 1 | 6.96 |
| 2 | 16.96 |
+------------+---------------+
Average selling price = Total Price of Product / Number of products sold.
Average selling price for product 1 = ((100 * 5) + (15 * 20)) / 115 = 6.96
Average selling price for product 2 = ((200 * 15) + (30 * 30)) / 230 = 16.96

Write your MySQL query statement below
select distinct p.product_id, round(sum(price * units) / sum(units), 2) as
average_price
from Prices as p join UnitsSold as u
on p.product_id = u.product_id and u.purchase_date between p.start_date and
p.end_date
group by p.product_id
order by p.product_id;

Description

Table: Friendship

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user1_id | int |
| user2_id | int |
+---------------+---------+
(user1_id, user2_id) is the primary key for this table.
Each row of this table indicates that there is a friendship relation between
user1_id and user2_id.

Table: Likes

+-------------+---------+
| Column Name | Type |
+-------------+---------+
| user_id | int |
| page_id | int |
+-------------+---------+
(user_id, page_id) is the primary key for this table.
Each row of this table indicates that user_id likes page_id.

Write an SQL query to recommend pages to the user with user_id = 1 using the
pages that your friends liked. It should not recommend pages you already liked.

Return result table in any order without duplicates.

The query result format is in the following example:

Friendship table:
+----------+----------+
| user1_id | user2_id |
+----------+----------+
1	2
1	3
1	4
2	3
2	4
2	5
6	1
+----------+----------+

Likes table:

Solution

01/21/2020 (MySQL):

+---------+---------+
| user_id | page_id |
+---------+---------+
1	88
2	23
3	24
4	56
5	11
6	33
2	77
3	77
6	88
+---------+---------+

Result table:
+------------------+
| recommended_page |
+------------------+
| 23 |
| 24 |
| 56 |
| 33 |
| 77 |
+------------------+
User one is friend with users 2, 3, 4 and 6.
Suggested pages are 23 from user 2, 24 from user 3, 56 from user 3 and 33 from
user 6.
Page 77 is suggested from both user 2 and user 3.
Page 88 is not suggested because user 1 already likes it.

Write your MySQL query statement below
select distinct page_id as recommended_page
from Likes as l left join Friendship as f on f.user2_id = l.user_id
where f.user1_id = 1 and page_id not in (
 select page_id from Likes where user_id = 1
)
union
select distinct page_id as recommended_page
from Likes as l left join Friendship as f on f.user1_id = l.user_id
where f.user2_id = 1 and page_id not in (
 select page_id from Likes where user_id = 1
);

1270. All People Report to the Given Manager
Description

Table: Employees

+---------------+---------+
| Column Name | Type |
+---------------+---------+
employee_id	int
employee_name	varchar
manager_id	int
+---------------+---------+
employee_id is the primary key for this table.
Each row of this table indicates that the employee with ID employee_id and name
employee_name reports his work to his/her direct manager with manager_id
The head of the company is the employee with employee_id = 1.

Write an SQL query to find employee_id of all employees that directly or
indirectly report their work to the head of the company.

The indirect relation between managers will not exceed 3 managers as the company
is small.

Return result table in any order without duplicates.

The query result format is in the following example:

Employees table:
+-------------+---------------+------------+
| employee_id | employee_name | manager_id |
+-------------+---------------+------------+
1	Boss	1
3	Alice	3
2	Bob	1
4	Daniel	2
7	Luis	4
8	Jhon	3
9	Angela	8
77	Robert	1
+-------------+---------------+------------+

Result table:
+-------------+
| employee_id |
+-------------+
| 2 |

Solution

01/19/2020 (MySQL):

1280. Students and Examinations
Description

| 77 |
| 4 |
| 7 |
+-------------+

The head of the company is the employee with employee_id 1.
The employees with employee_id 2 and 77 report their work directly to the head
of the company.
The employee with employee_id 4 report his work indirectly to the head of the
company 4 --> 2 --> 1.
The employee with employee_id 7 report his work indirectly to the head of the
company 7 --> 4 --> 2 --> 1.
The employees with employee_id 3, 8 and 9 don't report their work to head of
company directly or indirectly.

Write your MySQL query statement below
select distinct e1.employee_id
from Employees as e1 inner join Employees as e2 inner join Employees as e3 on
e1.manager_id = e2.employee_id and e2.manager_id = e3.employee_id
where e1.employee_id <> 1 and (e1.manager_id = 1 or e2.manager_id = 1 or
e3.manager_id = 1);

Table: Students

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| student_id | int |
| student_name | varchar |
+---------------+---------+
student_id is the primary key for this table.
Each row of this table contains the ID and the name of one student in the
school.

Table: Subjects

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| subject_name | varchar |
+--------------+---------+
subject_name is the primary key for this table.
Each row of this table contains the name of one subject in the school.

Table: Examinations

+--------------+---------+
| Column Name | Type |
+--------------+---------+
| student_id | int |
| subject_name | varchar |
+--------------+---------+
There is no primary key for this table. It may contain duplicates.
Each student from the Students table takes every course from Subjects table.
Each row of this table indicates that a student with ID student_id attended the
exam of subject_name.

Write an SQL query to find the number of times each student attended each exam.

Order the result table by student_id and subject_name.

The query result format is in the following example:

Students table:
+------------+--------------+
| student_id | student_name |
+------------+--------------+
1	Alice
2	Bob
13	John
6	Alex
+------------+--------------+	
Subjects table:	
+--------------+	
subject_name	
+--------------+	
Math	
Physics	
Programming	
+--------------+	
Examinations table:	
+------------+--------------+	
student_id	subject_name

Solution

01/13/2020:

+------------+--------------+
1	Math
1	Physics
1	Programming
2	Programming
1	Physics
1	Math
13	Math
13	Programming
13	Physics
2	Math
1	Math
+------------+--------------+	
Result table:	
+------------+--------------+--------------+----------------+	
student_id	student_name
+------------+--------------+--------------+----------------+	
1	Alice
1	Alice
1	Alice
2	Bob
2	Bob
2	Bob
6	Alex
6	Alex
6	Alex
13	John
13	John
13	John
+------------+--------------+--------------+----------------+
The result table should contain all students and all subjects.
Alice attended Math exam 3 times, Physics exam 2 times and Programming exam 1
time.
Bob attended Math exam 1 time, Programming exam 1 time and didn't attend the
Physics exam.
Alex didn't attend any exam.
John attended Math exam 1 time, Physics exam 1 time and Programming exam 1 time.

1285. Find the Start and End Number of Continuous Ranges
Description

Write your MySQL query statement below
select s.student_id, s.student_name, u.subject_name, count(e.subject_name) as
attended_exams
from
 Students as s join Subjects as u left join Examinations as e
 on
 s.student_id = e.student_id and u.subject_name = e.subject_name
group by s.student_id, u.subject_name
order by s.student_id, u.subject_name;

Table: Logs

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| log_id | int |
+---------------+---------+
id is the primary key for this table.
Each row of this table contains the ID in a log Table.

Since some IDs have been removed from Logs. Write an SQL query to find the start
and end number of continuous ranges in table Logs.

Order the result table by start_id.

The query result format is in the following example:

Logs table:
+------------+
| log_id |
+------------+
| 1 |
| 2 |
| 3 |
| 7 |
| 8 |
| 10 |
+------------+

Result table:
+------------+--------------+

Solution

01/19/2020 (MySQL):

01/19/2020 (MySQL, using variables):

1294. Weather Type in Each Country

| start_id | end_id |
+------------+--------------+
1	3
7	8
10	10
+------------+--------------+
The result table should contain all ranges in table Logs.
From 1 to 3 is contained in the table.
From 4 to 6 is missing in the table
From 7 to 8 is contained in the table.
Number 9 is missing in the table.
Number 10 is contained in the table.

Write your MySQL query statement below
select l1.log_id as start_id, l2.log_id as end_id
from
 (
 select log_id
 from Logs
 where log_id - 1 not in (select * from Logs)
) as l1,
 (
 select log_id
 from Logs
 where log_id + 1 not in (select * from Logs)
) as l2
where l1.log_id <= l2.log_id
group by l1.log_id;

Write your MySQL query statement below
select min(log_id) as start_id, max(log_id) as end_id
from(
 select *, (@id:=@id+1) as id
 from logs, (select @id:= 0) as init
) tmp
group by log_id - id

Description

Table: Countries

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| country_id | int |
| country_name | varchar |
+---------------+---------+
country_id is the primary key for this table.
Each row of this table contains the ID and the name of one country.

Table: Weather

+---------------+---------+
| Column Name | Type |
+---------------+---------+
country_id	int
weather_state	varchar
day	date
+---------------+---------+
(country_id, day) is the primary key for this table.
Each row of this table indicates the weather state in a country for one day.

Write an SQL query to find the type of weather in each country for November
2019.

The type of weather is Cold if the average weather_state is less than or equal
15, Hot if the average weather_state is greater than or equal 25 and Warm
otherwise.

Return result table in any order.

The query result format is in the following example:

Countries table:
+------------+--------------+
| country_id | country_name |
+------------+--------------+
2	USA
3	Australia
7	Peru
5	China
8	Morocco
9	Spain

Solution

+------------+--------------+
Weather table:
+------------+---------------+------------+
| country_id | weather_state | day |
+------------+---------------+------------+
2	15	2019-11-01
2	12	2019-10-28
2	12	2019-10-27
3	-2	2019-11-10
3	0	2019-11-11
3	3	2019-11-12
5	16	2019-11-07
5	18	2019-11-09
5	21	2019-11-23
7	25	2019-11-28
7	22	2019-12-01
7	20	2019-12-02
8	25	2019-11-05
8	27	2019-11-15
8	31	2019-11-25
9	7	2019-10-23
9	3	2019-12-23
+------------+---------------+------------+		
Result table:		
+--------------+--------------+		
country_name	weather_type	
+--------------+--------------+		
USA	Cold	
Austraila	Cold	
Peru	Hot	
China	Warm	
Morocco	Hot	
+--------------+--------------+
Average weather_state in USA in November is (15) / 1 = 15 so weather type is
Cold.
Average weather_state in Austraila in November is (-2 + 0 + 3) / 3 = 0.333 so
weather type is Cold.
Average weather_state in Peru in November is (25) / 1 = 25 so weather type is
Hot.
Average weather_state in China in November is (16 + 18 + 21) / 3 = 18.333 so
weather type is Warm.
Average weather_state in Morocco in November is (25 + 27 + 31) / 3 = 27.667 so
weather type is Hot.
We know nothing about average weather_state in Spain in November so we don't
include it in the result table.

01/14/2020:

1303. Find the Team Size
Description

Write your MySQL query statement below
select
 country_name,
 case
 when avg(weather_state) <= 15 then 'Cold'
 when avg(weather_state) >= 25 then 'Hot'
 else 'Warm'
 end as weather_type
from
 Weather as w
 left join
 Countries as c
 on c.country_id = w.country_id
where day between '2019-11-01' and '2019-11-30'
group by w.country_id;

Table: Employee

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| employee_id | int |
| team_id | int |
+---------------+---------+
employee_id is the primary key for this table.
Each row of this table contains the ID of each employee and their respective
team.
Write an SQL query to find the team size of each of the employees.

Return result table in any order.

The query result format is in the following example:

Employee Table:
+-------------+------------+
| employee_id | team_id |
+-------------+------------+
| 1 | 8 |
| 2 | 8 |

Solution

01/13/2020:

1308. Running Total for Different Genders
Description

3	8
4	7
5	9
6	9
+-------------+------------+	
Result table:	
+-------------+------------+	
employee_id	team_size
+-------------+------------+	
1	3
2	3
3	3
4	1
5	2
6	2
+-------------+------------+
Employees with Id 1,2,3 are part of a team with team_id = 8.
Employees with Id 4 is part of a team with team_id = 7.
Employees with Id 5,6 are part of a team with team_id = 9.

Write your MySQL query statement below
select employee_id, team_size
from Employee as e join (select team_id, count(*) as team_size from employee
group by team_id) as t
on e.team_id = t.team_id;

Table: Scores

+---------------+---------+
| Column Name | Type |
+---------------+---------+
player_name	varchar
gender	varchar
day	date
score_points	int
+---------------+---------+
(gender, day) is the primary key for this table.

A competition is held between females team and males team.
Each row of this table indicates that a player_name and with gender has scored
score_point in someday.
Gender is 'F' if the player is in females team and 'M' if the player is in males
team.

Write an SQL query to find the total score for each gender at each day.

Order the result table by gender and day

The query result format is in the following example:

Scores table:
+-------------+--------+------------+--------------+
| player_name | gender | day | score_points |
+-------------+--------+------------+--------------+
Aron	F	2020-01-01	17
Alice	F	2020-01-07	23
Bajrang	M	2020-01-07	7
Khali	M	2019-12-25	11
Slaman	M	2019-12-30	13
Joe	M	2019-12-31	3
Jose	M	2019-12-18	2
Priya	F	2019-12-31	23
Priyanka	F	2019-12-30	17
+-------------+--------+------------+--------------+			
Result table:			
+--------+------------+-------+			
gender	day	total	
+--------+------------+-------+			
F	2019-12-30	17	
F	2019-12-31	40	
F	2020-01-01	57	
F	2020-01-07	80	
M	2019-12-18	2	
M	2019-12-25	13	
M	2019-12-30	26	
M	2019-12-31	29	
M	2020-01-07	36	
+--------+------------+-------+
For females team:
First day is 2019-12-30, Priyanka scored 17 points and the total score for the
team is 17.
Second day is 2019-12-31, Priya scored 23 points and the total score for the
team is 40.
Third day is 2020-01-01, Aron scored 17 points and the total score for the team
is 57.

Solution

01/19/2020 (MS SQL):

01/19/2020 (MySQL):

1321. Restaurant Growth
Description

Fourth day is 2020-01-07, Alice scored 23 points and the total score for the
team is 80.
For males team:
First day is 2019-12-18, Jose scored 2 points and the total score for the team
is 2.
Second day is 2019-12-25, Khali scored 11 points and the total score for the
team is 13.
Third day is 2019-12-30, Slaman scored 13 points and the total score for the
team is 26.
Fourth day is 2019-12-31, Joe scored 3 points and the total score for the team
is 29.
Fifth day is 2020-01-07, Bajrang scored 7 points and the total score for the
team is 36.

/* Write your T-SQL query statement below */
select gender, day, sum(score_points) over(partition by gender order by day) as
total
from Scores
order by gender, day;

Write your MySQL query statement below
select s1.gender, s1.day, sum(s2.score_points) as total
from Scores as s1 join Scores as s2 on s1.gender = s2.gender and s1.day >=
s2.day
group by s1.gender, s1.day
order by gender, day;

Table: Customer

+---------------+---------+
| Column Name | Type |
+---------------+---------+
customer_id	int
name	varchar
visited_on	date

| amount | int |
+---------------+---------+
(customer_id, visited_on) is the primary key for this table.
This table contains data about customer transactions in a restaurant.
visited_on is the date on which the customer with ID (customer_id) have visited
the restaurant.
amount is the total paid by a customer.

You are the restaurant owner and you want to analyze a possible expansion (there
will be at least one customer every day).

Write an SQL query to compute moving average of how much customer paid in a 7
days window (current day + 6 days before) .

The query result format is in the following example:

Return result table ordered by visited_on.

average_amount should be rounded to 2 decimal places, all dates are in the
format ('YYYY-MM-DD').

Customer table:
+-------------+--------------+--------------+-------------+
| customer_id | name | visited_on | amount |
+-------------+--------------+--------------+-------------+
1	Jhon	2019-01-01	100
2	Daniel	2019-01-02	110
3	Jade	2019-01-03	120
4	Khaled	2019-01-04	130
5	Winston	2019-01-05	110
6	Elvis	2019-01-06	140
7	Anna	2019-01-07	150
8	Maria	2019-01-08	80
9	Jaze	2019-01-09	110
1	Jhon	2019-01-10	130
3	Jade	2019-01-10	150
+-------------+--------------+--------------+-------------+

Result table:
+--------------+--------------+----------------+
| visited_on | amount | average_amount |
+--------------+--------------+----------------+
2019-01-07	860	122.86
2019-01-08	840	120
2019-01-09	840	120
2019-01-10	1000	142.86

Solution

01/21/2020 (MySQL, user defined variables):

+--------------+--------------+----------------+

1st moving average from 2019-01-01 to 2019-01-07 has an average_amount of (100 +
110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
2nd moving average from 2019-01-02 to 2019-01-08 has an average_amount of (110 +
120 + 130 + 110 + 140 + 150 + 80)/7 = 120
3rd moving average from 2019-01-03 to 2019-01-09 has an average_amount of (120 +
130 + 110 + 140 + 150 + 80 + 110)/7 = 120
4th moving average from 2019-01-04 to 2019-01-10 has an average_amount of (130 +
110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86

Write your MySQL query statement below
select
visited_on, amount, average_amount
from (
 select
 visited_on,
 @cnt := @cnt + 1 as cnt,
 @d7 := @d6,
 @d6 := @d5,
 @d5 := @d4,
 @d4 := @d3,
 @d3 := @d2,
 @d2 := @d1,
 @d1 := amount,
 @total := @d1 + @d2 + @d3 + @d4 + @d5 + @d6 + @d7 as amount,
 round(@total / 7, 2) as average_amount
 from
 (
 select visited_on, sum(amount) as amount
 from Customer
 group by visited_on
) as c,
 (
 select
 @cnt := 0,
 @total := 0,
 @d1 := 0,
 @d2 := 0,
 @d3 := 0,
 @d4 := 0,
 @d5 := 0,
 @d6 := 0,
 @d7 := 0

1322. Ads Performance
Description

) as t
) as s
where cnt >= 7;

Table: Ads

+---------------+---------+
| Column Name | Type |
+---------------+---------+
ad_id	int
user_id	int
action	enum
+---------------+---------+
(ad_id, user_id) is the primary key for this table.
Each row of this table contains the ID of an Ad, the ID of a user and the action
taken by this user regarding this Ad.
The action column is an ENUM type of ('Clicked', 'Viewed', 'Ignored').

A company is running Ads and wants to calculate the performance of each Ad.

Performance of the Ad is measured using Click-Through Rate (CTR) where:
CTR = 0, if Ad total clicks + Ad total views = 0
CTR = Ad total clicks / (Ad total clicks + Ad total views) * 100, otherwise.

Write an SQL query to find the ctr of each Ad.

Round ctr to 2 decimal points. Order the result table by ctr in descending order
and by ad_id in ascending order in case of a tie.

The query result format is in the following example:

Ads table:
+-------+---------+---------+
| ad_id | user_id | action |
+-------+---------+---------+
1	1	Clicked
2	2	Clicked
3	3	Viewed
5	5	Ignored
1	7	Ignored

Solution

01/18/2020:

1327. List the Products Ordered in a Period
Description

2	7	Viewed
3	5	Clicked
1	4	Viewed
2	11	Viewed
1	2	Clicked
+-------+---------+---------+		
Result table:		
+-------+-------+		
ad_id	ctr	
+-------+-------+		
1	66.67	
3	50.00	
2	33.33	
5	0.00	
+-------+-------+
for ad_id = 1, ctr = (2/(2+1)) * 100 = 66.67
for ad_id = 2, ctr = (1/(1+2)) * 100 = 33.33
for ad_id = 3, ctr = (1/(1+1)) * 100 = 50.00
for ad_id = 5, ctr = 0.00, Note that ad_id = 5 has no clicks or views.
Note that we don't care about Ignored Ads.
Result table is ordered by the ctr. in case of a tie we order them by ad_id

Write your MySQL query statement below
select ad_id, round(if(clicks + views = 0, 0, clicks / (clicks + views) * 100),
2) as ctr
from (
 select ad_id, sum(if(action='Clicked', 1, 0)) as clicks,
sum(if(action='Viewed', 1, 0)) as views
 from Ads
 group by ad_id
) as a
order by ctr desc, ad_id asc;

Table: Products

+------------------+---------+
| Column Name | Type |

+------------------+---------+
product_id	int
product_name	varchar
product_category	varchar
+------------------+---------+
product_id is the primary key for this table.
This table contains data about the company's products.
Table: Orders

+---------------+---------+
| Column Name | Type |
+---------------+---------+
product_id	int
order_date	date
unit	int
+---------------+---------+
There is no primary key for this table. It may have duplicate rows.
product_id is a foreign key to Products table.
unit is the number of products ordered in order_date.

Write an SQL query to get the names of products with greater than or equal to
100 units ordered in February 2020 and their amount.

Return result table in any order.

The query result format is in the following example:

Products table:
+-------------+-----------------------+------------------+
| product_id | product_name | product_category |
+-------------+-----------------------+------------------+
1	Leetcode Solutions	Book
2	Jewels of Stringology	Book
3	HP	Laptop
4	Lenovo	Laptop
5	Leetcode Kit	T-shirt
+-------------+-----------------------+------------------+

Orders table:
+--------------+--------------+----------+
| product_id | order_date | unit |
+--------------+--------------+----------+
1	2020-02-05	60
1	2020-02-10	70
2	2020-01-18	30
2	2020-02-11	80

Solution

01/30/2020 (MySQL):

1336. Number of Transactions per Visit
Description

3	2020-02-17	2
3	2020-02-24	3
4	2020-03-01	20
4	2020-03-04	30
4	2020-03-04	60
5	2020-02-25	50
5	2020-02-27	50
5	2020-03-01	50
+--------------+--------------+----------+

Result table:
+--------------------+---------+
| product_name | unit |
+--------------------+---------+
| Leetcode Solutions | 130 |
| Leetcode Kit | 100 |
+--------------------+---------+

Products with product_id = 1 is ordered in February a total of (60 + 70) = 130.
Products with product_id = 2 is ordered in February a total of 80.
Products with product_id = 3 is ordered in February a total of (2 + 3) = 5.
Products with product_id = 4 was not ordered in February 2020.
Products with product_id = 5 is ordered in February a total of (50 + 50) = 100.

Write your MySQL query statement below
select product_name, sum(unit) as unit
from Orders as o left join Products as p on o.product_id = p.product_id
where order_date between '2020-02-01' and '2020-02-29'
group by o.product_id
having sum(unit) >= 100;

Table: Visits

+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |

| visit_date | date |
+---------------+---------+
(user_id, visit_date) is the primary key for this table.
Each row of this table indicates that user_id has visited the bank in
visit_date.

Table: Transactions

+------------------+---------+
| Column Name | Type |
+------------------+---------+
user_id	int
transaction_date	date
amount	int
+------------------+---------+
There is no primary key for this table, it may contain duplicates.
Each row of this table indicates that user_id has done a transaction of amount
in transaction_date.
It is guaranteed that the user has visited the bank in the transaction_date.(i.e
The Visits table contains (user_id, transaction_date) in one row)

A bank wants to draw a chart of the number of transactions bank visitors did in
one visit to the bank and the corresponding number of visitors who have done
this number of transaction in one visit.

Write an SQL query to find how many users visited the bank and didn't do any
transactions, how many visited the bank and did one transaction and so on.

The result table will contain two columns:

transactions_count which is the number of transactions done in one visit.
visits_count which is the corresponding number of users who did
transactions_count in one visit to the bank.
transactions_count should take all values from 0 to max(transactions_count) done
by one or more users.

Order the result table by transactions_count.

The query result format is in the following example:

Visits table:
+---------+------------+
| user_id | visit_date |
+---------+------------+
1	2020-01-01
2	2020-01-02
12	2020-01-01

Solution

19	2020-01-03
1	2020-01-02
2	2020-01-03
1	2020-01-04
7	2020-01-11
9	2020-01-25
8	2020-01-28
+---------+------------+	
Transactions table:	
+---------+------------------+--------+	
user_id	transaction_date
+---------+------------------+--------+	
1	2020-01-02
2	2020-01-03
7	2020-01-11
1	2020-01-04
9	2020-01-25
9	2020-01-25
8	2020-01-28
9	2020-01-25
+---------+------------------+--------+	
Result table:	
+--------------------+--------------+	
transactions_count	visits_count
+--------------------+--------------+	
0	4
1	5
2	0
3	1
+--------------------+--------------+
* For transactions_count = 0, The visits (1, "2020-01-01"), (2, "2020-01-02"),
(12, "2020-01-01") and (19, "2020-01-03") did no transactions so visits_count =
4.
* For transactions_count = 1, The visits (2, "2020-01-03"), (7, "2020-01-11"),
(8, "2020-01-28"), (1, "2020-01-02") and (1, "2020-01-04") did one transaction
so visits_count = 5.
* For transactions_count = 2, No customers visited the bank and did two
transactions so visits_count = 0.
* For transactions_count = 3, The visit (9, "2020-01-25") did three transactions
so visits_count = 1.
* For transactions_count >= 4, No customers visited the bank and did more than
three transactions so we will stop at transactions_count = 3

The chart drawn for this example is as follows:

01/30/2020 (MySQL):

Write your MySQL query statement below
select (select 0) as transactions_count, count(*) as visits_count
from Visits
where (user_id, visit_date) not in (
 select user_id, transaction_date
 from Transactions
)
union
select s.transactions_count, if(visits_count is null, 0, visits_count) as
visits_count
from (
 select tc as transactions_count
 from (
 select t.user_id, @tc := @tc + 1 as tc
 from Transactions as t, (select @tc := 0) as u
) as s
 where tc <= (
 select ifnull(max(transactions_count), 0)
 from (
 select count(*) as transactions_count
 from Transactions
 group by user_id, transaction_date
) as t
)
) as s left join (
 select transactions_count, count(*) as visits_count
 from (
 select count(*) as transactions_count
 from Transactions
 group by user_id, transaction_date
) as t
 group by transactions_count
) as t on s.transactions_count = t.transactions_count
order by transactions_count;

	Database Questions
	175. Combine Two Tables
	176. Second Highest Salary
	177. Nth Highest Salary
	178. Rank Scores
	180. Consecutive Numbers
	181. Employees Earning More Than Their Managers
	182. Duplicate Emails
	183. Customers Who Never Order
	196. Delete Duplicate Emails
	197. Rising Temperature
	511. Game Play Analysis I
	512. Game Play Analysis II
	534. Game Play Analysis III
	570. Managers with at Least 5 Direct Reports
	577. Employee Bonus
	584. Find Customer Referee
	586. Customer Placing the Largest Number of Orders
	595. Big Countries
	596. Classes More Than 5 Students
	597. Friend Requests I: Overall Acceptance Rate
	603. Consecutive Available Seats
	607. Sales Person
	608. Tree Node
	610. Triangle Judgement
	612. Shortest Distance in a Plane
	613. Shortest Distance in a Line
	619. Biggest Single Number
	620. Not Boring Movies
	626. Exchange Seats
	627. Swap Salary
	1045. Customers Who Bought All Products
	1050. Actors and Directors Who Cooperated At Least Three Times
	1068. Product Sales Analysis I
	1069. Product Sales Analysis II
	1070. Product Sales Analysis III
	1075. Project Employees I
	1076. Project Employees II
	1077. Project Employees III
	1082. Sales Analysis I
	1083. Sales Analysis II
	1084. Sales Analysis III
	1112. Highest Grade For Each Student
	1113. Reported Posts
	1126. Active Businesses
	1141. User Activity for the Past 30 Days I
	1142. User Activity for the Past 30 Days II
	1148. Article Views I
	1164. Product Price at a Given Date
	1173. Immediate Food Delivery I
	1174. Immediate Food Delivery II
	1179. Reformat Department Table
	1193. Monthly Transactions I
	1204. Last Person to Fit in the Elevator
	1211. Queries Quality and Percentage
	1212. Team Scores in Football Tournament
	1225. Report Contiguous Dates
	1241. Number of Comments per Post
	1251. Average Selling Price
	1264. Page Recommendations
	1270. All People Report to the Given Manager
	1280. Students and Examinations
	1285. Find the Start and End Number of Continuous Ranges
	1294. Weather Type in Each Country
	1303. Find the Team Size
	1308. Running Total for Different Genders
	1321. Restaurant Growth
	1322. Ads Performance
	1327. List the Products Ordered in a Period
	1336. Number of Transactions per Visit

